Table of contents

Contents

Table of contents ... 2

List of figures .. 7

List of tables ... 9

1 Overview ... 10

2 System requirements .. 11
 2.1 Supported Microsoft System Center Configuration Manager versions .. 11
 2.2 Supported client operating systems ... 11

3 Downloading HP Manageability Integration Kit .. 12

4 Installing HP Manageability Integration Kit into Configuration Manager 13
 4.1 Distributing HP Client Support Packages ... 13

5 HP MIK plugins .. 15
 5.1 Compliance settings ... 15
 5.2 Configuration Baselines .. 16

6 HP BIOS Password Manager ... 17
 6.1 Supported client platforms .. 17
 6.2 Supported client operating systems ... 17
 6.3 Prerequisites .. 17
 6.4 User interface ... 17
 6.5 Creating a policy .. 17
 6.6 Change BIOS Password .. 19
 6.7 Remove the BIOS Password .. 23
 6.8 Set new BIOS Password ... 25

7 HP BIOS Configuration ... 28
Technical whitepaper

15.1 Obtaining a WinPE driver pack...88
15.2 Importing a WinPE driver pack and creating boot images..........................88

16 HP Client Task Sequences ...90
16.1 Creating a deployment task sequence ..90
16.2 Configuring task sequences ...91
16.2.1 Assigning a boot image ...93
16.2.2 Allowing access to deployment content ..93
16.3 Configuring the Set BIOS Configuration task step ..93
16.3.1 Adding and editing configuration files ...94
16.4 Refreshing task sequence references ..95
16.5 Using the Configure RAID Example template ..95
16.5.2 Preparing the packages used by the task sequence95
16.5.3 Configuring task sequence steps ...96
16.5.4 Assigning a boot image ...97
16.5.5 Allowing access to deployment content ...98
16.5.6 Understanding the task sequence execution flow98

17 HP BIOS Configuration Utility (BCU) ...100

18 HP Sure Click ..101

19 HP Sure Sense ...102

20 HP Password Utility ...104

21 HP Collaboration Keyboard ..105

22 HP Recipes ...106

23 HP Reports ...104

24 Uninstalling HP MIK ...105

25 Appendix A—Device collection query examples...105
22.2 All HP Systems including older models ...105
22.3 HP systems with a specific model name ...106
List of figures

Figure 1 HP Manageability Integration Kit – Navigation Index .. 13
Figure 2 Software Library of Configuration Manager ... 14
Figure 3 Configuration Items .. 16
Figure 4 Create Policy ... 18
Figure 5 Creating a baseline name ... 18
Figure 6 Completing the Create Baseline task .. 19
Figure 7 Changing the BIOS password ... 20
Figure 8 BIOS Password change summary .. 21
Figure 9 Compliance settings ... 22
Figure 10 Deploy compliance settings ... 22
Figure 11 Select Device Collection ... 23
Figure 12 Removing the BIOS password ... 24
Figure 13 Confirming BIOS password removal .. 25
Figure 14 Set new BIOS password .. 26
Figure 15 Confirming new BIOS password .. 27
Figure 16 HP BIOS Configuration (List view) ... 30
Figure 17 HP BIOS Configuration (Select All Settings) .. 31
Figure 18 HP BIOS Configuration (Show Selected Settings Only) ... 31
Figure 19 Expand/Collapse All ... 32
Figure 20 HP BIOS Configuration (Filter to settings containing) ... 33
Figure 21 Configuration baseline list .. 35
Figure 22 Configure high-level features of HP Client Security Manager 37
Figure 23 Configure Intel Authenticate .. 38
Figure 24 Configure Windows Logon authentication ... 38
Figure 25 Configure policy and credentials for Windows sessions and VPN policies 40
Figure 26 Configure Advanced Options .. 40
Figure 27 Review Summary .. 43
Figure 28 Microsoft Device Guard .. 58
Figure 29 Edit baseline policies .. 59
Figure 30 HP Sure Start ... 61
Figure 31 BIOS Security settings ... 62
Figure 32 Events and Recovery Settings .. 63
Figure 33 HP Sure Start Audit Log ... 64
Figure 34 HP Sure Start Policy Configuration ... 65
Figure 35 Configure Sure Start Baselines ... 65
Figure 36 HP Sure Start Audit Logs ... 66
Figure 37 HP SureView Baseline configuration ... 67
Figure 38 HP Sure View .. 68
Figure 39 Deploy a Device Collection ... 69
Figure 40 HP SureView baselines ... 70
Figure 41 HP Trusted Platform Module Firmware Update .. 73
Figure 42 HP TPM Firmware Update Baseline ... 74
Figure 43 HP WorkWise Feature Selection .. 76
Figure 44 HP WorkWise Baseline configuration ... 77
Figure 45 HP Client Driver Pack selection .. 78
Figure 46 HP Client Driver Pack Create and Import .. 79
Figure 47 HP Client Driver Pack Driver Selection ... 80
Figure 48 HP Client Driver Pack Distribution Point, Network Shares, and other settings 81
Figure 49 HP Client Driver Pack Distribution Points, Network Shares, and other settings 81
Figure 50 HP Client Driver Packs – Download and Import .. 83
Figure 51 HP Import Driver Pack Status Window ... 84
Figure 52 HP Client Driver Pack Import Download ... 87
Figure 53 Create HP Client Boot Image(s) .. 89
Figure 54 HP Client Bare Metal Deployment Task Sequence ... 91
Figure 55 HP Client Task Sequence Example Task Sequence Editor 92
Figure 56 Configuring the Set BIOS Configuration task step ... 94
Figure 57 HP Client Task Sequence Configure RAID Example Task Sequence Editor 96
Figure 58 CM_IntelAuthenticatePolicies WMI Class ... 111
List of tables

Table 1: Device Guard error code table ... 59
Table 2: Refreshing task sequence references ... 95
1 Overview

HP computers are Designed for Manageability (DfM). DfM is centered on two tenets:

- Provide a means that will assist an IT administrator in managing HP BIOS, hardware, and preinstalled software that comes with the computer.
- Provide a solution that works with the client management console of an administrator’s choice.

The solution created to address these two tenets is called HP Manageability Integration Kit (MIK).

HP MIK is a client-management-console-agnostic solution that extends management aspects to HP hardware, BIOS, and software capabilities.

The purpose of HP MIK is to enable a user experience that simplifies routine enterprise process and tasks by integrating into existing tools and workflows.

Deploy HP MIK to begin enjoying these key benefits:

- Speed up the basics of management—Reduce the number of steps needed to create, deploy, and manage images, BIOS, and system security so you can focus on business.
- Protect data—Secure BIOS settings, set authentication and credentials requirements, enable Device Guard, and manage Trusted Platform Module (TPM) firmware updates.
- Manage software—Enable IT administrators to remotely manage features supported by the software, such as HP Client Security.

HP MIK is optimized to work with Microsoft® System Center Configuration Manager, although it does work with other client management consoles via scripting. This document includes examples and screenshots only of the HP Manageability Integration Kit plugin within Configuration Manager. For the full user guide, go to the HP Manageability website at http://www.hp.com/go/clientmanagement.
2 System requirements

HP Manageability Integration Kit can be installed on servers running supported versions of Microsoft System Center Configuration Manager 2012 and clients running supported Windows® operating systems.

2.1 Supported Microsoft System Center Configuration Manager versions

HP Manageability Integration Kit can be installed on servers running the following versions of the Microsoft System Center Configuration Manager. To determine server operating system requirements, see the Microsoft System Center Configuration Manager documentation.

- Microsoft System Center 2012 R2 Configuration Manager service pack 1 (SP1) with or without cumulative update 1 (CU1) or later
- Microsoft System Center 2012 R2 Configuration Manager
- Microsoft System Center 2012 Configuration Manager SP2 with or without CU1 or later and
- Microsoft System Center 2012 Configuration Manager SP1 and
- Microsoft System Center Configuration Manager 1511 or later

2.2 Supported client operating systems

The HP Manageability Integration Kit client components are supported on the following client operating systems:

NOTE
Some HP Manageability Kit features have additional requirements.

- Windows 10
- Windows 8.1
- Windows 7
3 Downloading HP Manageability Integration Kit

To download the HP Manageability Integration Kit:

2. Under Resources, select HP Download Library.
3. Download HP Manageability Integration Kit (MIK) for Microsoft System Center Configuration Manager.
4. Under MIK Client requirements, download the corresponding SoftPaqs for the features MIK will be used to manage.
4 Installing HP Manageability Integration Kit into Configuration Manager

1. Verify that any instances of the Configuration Manager console are closed.
2. If HP Client Integration Kit (CIK) is installed on the system, uninstall it.
3. Run the downloaded HP Manageability Integration Kit (MIK) for Microsoft System Center Configuration Manager SoftPaq and follow the on-screen instructions to complete the installation.
4. Open the Configuration Manager console and verify that HP Manageability Integration Kit is displayed under Assets and Compliance.

![Figure 1](image1.png)

4.1 Distributing HP Client Support Packages

After the installation is complete, HP Client Support Packages must be pushed out to the local distribution points.

1. In Configuration Manager, select Software Library, select Overview, select Application Management, select Packages, and then select HP Client Support Packages.

NOTE

Do not delete or rename the packages in this folder to prevent failure of dependent task sequences.

If a package is deleted, reinstall HP Manageability Integration Kit and select Repair in the installation wizard. Then, refresh the task sequences using the package. For more information, see Refreshing task sequences.
2. If this is a first-time installation, right-click HP Client BIOS Configuration Utility and select Distribute Content, and then follow the on-screen instructions to complete the wizard.

 – or –

 If this is an upgrade, right-click HP Client BIOS Configuration Utility and select Update Distribution Points and follow the on-screen instructions to complete the wizard.

3. If this is a first-time installation, right-click HP Client Support Tools and select Distribute Content, and then follow the on-screen instructions to complete the wizard.

 – or –

 If this is an upgrade, right-click HP Client Support Tools and select Update Distribution Points and follow the on-screen instructions to complete the wizard.

In the Software Library of Configuration Manager, the following menu items (indicated by dashed lines), folders (indicated by dotted-and-dashed lines), and packages (indicated by solid lines) are created after a driver pack or boot image is created via HP Manageability Integration Kit.

![Software Library of Configuration Manager]

Figure 2 Software Library of Configuration Manager

To open a menu item, either select it in the ribbon menu or use the right-click context menu.
5 HP MIK plugins

By default, the installer extends the functions of Configuration Manager by adding various plugins under the HP Manageability Integration Kit node.

For more information about managing these plugins with HP MIK, refer to the plugin’s respective section within this document.

Current Plugins:

- HP BIOS Configuration
- HP BIOS Password Manager
- HP Client Security with Intel Authenticate
- Device Guard
- HP Sure Start
- HP Sure Run
- HP Sure Recover
- HP SureView
- TPM Firmware Update
- HP WorkWise
- HP Collaboration Keyboard
- HP Sure Click
- HP PhoneWise
- HP Collaboration Keyboard
- HP Sure Click

HP MIK also includes features to help with operating system and software deployment. These features are detailed in the following sections within this document:

- HP Client Driver Packs
- HP Client Boot Images
- HP Client Task Sequences

5.1 Compliance settings

Policies created or edited using HP MIK plugins are saved as Configuration Manager compliance settings.

To locate a policy:

1. In Configuration Manager, select Assets and Compliance.
2. Select Overview, select Compliance Settings, and then select Configuration Items.
On this page, you can perform Configuration Manager functions, such as opening the Properties dialog box and setting the supported operating systems and hardware.

Figure 3 Configuration Items

If you create a configuration item with a plugin, the default name is composed of both the baseline name and the plugin name. For example, a configuration item created with a baseline named My BIOS Configuration Baseline and the HP BIOS Configuration plugin is named My BIOS Configuration Baseline – BIOS Configuration by default.

5.2 Configuration Baselines

IT administrators can select multiple configuration items for one Configuration Baseline. Baselines can also be deployed to different collections.

Right-click Configuration Baselines to select one of the following options:

- **Copy**—Clone the baseline
- **Delete**—Delete the baseline
- **Deploy**—Deploy to different collections
- **Properties**—View the deployed collection, edit the evaluation conditions, and filter the categories or users
6 HP BIOS Password Manager

The HP BIOS Password Manager interface allows the IT administrator to manage Password entry on client systems.

6.1 Supported client platforms
- HP commercial computers (2015 or later)

6.2 Supported client operating systems
- Windows 10
- Windows 8.1
- Windows 7

6.3 Prerequisites
- Microsoft .NET Framework 4.0 or higher.
- HP Manageability Integration Kit

6.4 User interface
The BIOS Password interface is very simple with two sections, current BIOS password and modification password (Change/Set or Remove password)

The current password must be provided in order to change or remove BIOS Password.

6.5 Creating a policy
1. In Configuration Manager, select Assets and Compliance, and then select Overview.
2. Select HP Manageability Integration Kit, right-click BIOS Password, and then select Create Policy.
3. Enter a Baseline name and start the creating policy wizard.

4. Click Create
5. Select the newly created baseline and click OK

Figure 6 Completing the Create Baseline task

6. In BIOS Password Manager Interface, provide the appropriate password based on your needs.

6.6 Change BIOS Password

This task is to change the current password set on client system to a new password. If your collection includes a mix of devices where some have the BIOS password set and some devices do not, this policy will apply the new password to all devices.

1. Mark the checkbox Current BIOS Password, and provide the password
2. Mark the checkbox Change, Set or Remove BIOS Password
3. Select the radio button for New Password
4. Provide new password string in both New Password and Confirm New Password fields
5. Click Next to continue

6. Review and click Save Policy
7. Click Deploy button

8. If you click Close instead of Deploy, MIK will save this baseline and its configuration for later use under Assets and Compliance > Overview > Compliance Settings > Configuration Baselines
Compliance settings

The policy has been saved successfully.
You can now deploy the baseline containing this policy. You can also start deployment from the Deploy option under the HP Manageability Integration Kit link in SCCM.
9. Select the appropriate collection to apply the policy and click Deploy

Figure 11 Select Device Collection

6.7 Remove the BIOS Password

This task is to remove or clear the current BIOS password set on client systems. If your collection includes a mix of devices where some devices have the BIOS Password set and some devices do not, the policy will apply to all and return as compliant.

If client systems have a different BIOS password set from the one being removed, the policy will fail and return an error.

1. Mark the checkbox Current BIOS Password, and provide the password
2. Mark the checkbox Change, Set or Remove BIOS Password
3. Select the radio button for Remove BIOS password
4. Click Next
5. Review and click Save Policy
6. Dialog is displayed to confirm that you selected to remove the BIOS Password. Click OK to continue
Figure 13 Confirming BIOS password removal

7. Click Deploy button to proceed to next screen
8. Select the appropriate collection and click Deploy

6.8 Set new BIOS Password

This task is to set a brand new BIOS Password on client system where there is no current BIOS Password set.

1. Mark the checkbox Change, Set or Remove BIOS Password
2. Select the radio button New Password and provide the password in both New Password and Confirm New Password fields
3. Click Next
4. Review and click Save Policy
5. Dialog is displayed to reconfirm there is no BIOS password set on client system. Click OK to continue.
6. Click Deploy and proceed to select the appropriate collection
7. Click Deploy
7 HP BIOS Configuration

The BIOS Configuration interface allows the IT administrator to define and deploy BIOS settings policies to client computers.

7.1 Supported client platforms
- HP commercial computers (2015 or later)

7.2 Supported client operating systems
- Windows 10
- Windows 8.1
- Windows 7

7.3 Prerequisites
- Microsoft .NET Framework 4.0 or higher.
- HP Manageability Integration Kit

7.4 User interface

There are three columns in the HP BIOS Configuration window.

The Select column is used to specify whether a setting is enforced by a policy. If a setting is selected, it is set to the specified value. If a setting is cleared, it is not modified.

The Settings column displays the setting name.

The Values column can be used to either enter a value or select a value from a drop-down menu, depending on the setting. If a specific syntax is required for an entered value, the box background turns green if the syntax is correct and turns red if the syntax needs to be corrected.

NOTE:
In Category View, a category must be expanded to display all three columns.

The icons next to some settings indicate the following behaviors:

- Indicates that a setting is only effective for one restart, and then it resets to the default value.
- Indicates that a setting requires confirmation on the next restart, and that the restart cannot be completed until confirmation is given.

7.5 Category View button

Select this button to display BIOS Settings as grouped categories
Figure 16 HP BIOS Configuration (Category view)

7.6 List View button

Select this button to display the BIOS settings as a list.
Figure 16 HP BIOS Configuration (List view)
7.7 Select All Settings

Select this checkbox option to select all settings while in Category view or in List view.

![Figure 17 HP BIOS Configuration (Select All Settings)](image)

7.8 Show Selected Settings Only

Select this checkbox option to show only settings that have been selected.

![Figure 18 HP BIOS Configuration (Show Selected Settings Only)](image)
7.9 Expand All/Collapse All button

Select this button to expand or collapse the details of each setting.

![Figure 19 Expand/Collapse All](image-url)
7.10 Filter to settings containing

Enter a term to quickly locate a setting in the list of settings, based on a partial string match.

![Figure 20](image.png) HP BIOS Configuration (Filter to settings containing)

7.11 Creating a policy

1. In Configuration Manager, select Assets and Compliance and then select Overview.
2. Expand HP Manageability Integration Kit, right-click BIOS Configuration, and then select Create Policy.
3. Enter a Baseline name and start the creating policy wizard.
4. Modify settings by selecting the setting and then selecting the new value.
5. After selecting and modifying BIOS settings, select Next.
6. Review the Summary page. If changes are necessary, select the Previous button; otherwise, select Save Policy.
7. After the policy has been saved successfully, select Deploy, and then select the target collections to which to apply the policy.

8. Restart the client computers to ensure that the BIOS settings take effect.

7.12 Editing a policy

1. In Configuration Manager, select Assets and Compliances and then select Overview.

2. Expand HP Manageability Integration Kit, right-click BIOS Configuration, and then select Edit Policy.

3. Select an existing baseline policy to edit and click OK to continue the wizard.
4. Follow steps 4 through 8 of Creating a policy.

NOTE:
For client computers, the HP MIK BIOS Configuration logs are stored in %PROGRAMDATA%\HP\HP MIK\Logs.
8 HP Client Security with Intel Authenticate Support

HP Client Security with Intel® Authenticate™ Support enables the management of HP Client Security software through Configuration Manager. HP Client Security uses features built into the BIOS, hardware, and software layers to help protect against attacks, loss, or theft. It can also take advantage of Intel® Authenticate™ capabilities to further enhance security.

8.1 Supported client platforms

- HP commercial computers using KBL processor (2015 or later)
- Intel Authenticate requires commercial level ME firmware 11.8.50.3399.
- If three factor authentication is desired, computers must be vPro enabled.
- Modern Standby – At this time Intel Authenticate does not fully support Modern Standby. Please disable this feature in the OS if using Intel Authenticate.

8.2 Supported client operating systems

- Windows 10 (Intel® Authenticate™ only supports Windows 10)
- Windows 8.1
- Windows 7

8.3 Other client system prerequisites

- Microsoft .NET Framework 4.6.1 or higher
- HP Client Security Manager 9.3.10.2571 or higher
- The HP Device Access Manager 8.4.12.0 or higher
- Intel Authenticate Engine 3.0.0.78 (optional)

NOTE:
Intel® Authenticate™ Engine is required to make use of Intel® Authenticate™ enhanced security features and requires the following additional drivers:
- Intel Management Engine Driver 11.6.0.1019 or higher
- Intel Bluetooth® Driver 19.00.1626.3453 or higher
- Intel Graphics Driver 21.20.16.4481 or higher - Intel Authenticate requires use of the Intel graphics card. If the PC has more than one graphic solution, Intel graphics must be used for Intel Authenticate PTD PIN authentication.
- Synaptics Touch Fingerprint Driver 5.5.6.1099 or higher (Swipe sensors are not supported.)

8.4 User interface

HP Client Security includes Client Security Manager, Device Access Manager, Sure Run, and Sure Recover

When you open HP Client Security, an introduction with a high-level description of the plugin is displayed. Select Create Policy. You will then be prompted to name your new policy baseline, select the new baseline, and enter any BIOS passwords needed (See HP BIOS Password Manager.)
8.5 Client Security Manager

Figure 22 Configure high-level features of HP Client Security Manager

8.5.1 Authentication

The following options are available:

- **Windows Logon**—Requires authentication at Windows logon (after the operating system starts)
- **Power On Authentication**—Requires authentication at computer start before the operating system starts.
- **One Step Logon**—Requires authentication only once at first logon prompt. Power-On Authentication must be enabled. (Please note that if using Intel® Authenticate™, One Step Logon is not supported due to the heightened security level.)
- **Password Manager**—Allows secure logon using security questions in case of a forgotten password or lost authentication device.
8.5.2 Intel Authenticate

This page allows you to configure Intel Authenticate, if Intel Authenticate Engine is installed.

Figure 23 Configure Intel Authenticate

The following options are available:

- **Enable Intel Authenticate**—Enables Intel Authenticate support. Please note that Intel Authenticate requires that certain hardware and software prerequisites be met in all computers in the collection the policy is being applied to. It also cannot be used with AMD processors so a separate collection of devices that meet the minimum requirements will need to be made. You can use the Authenticate_Check.exe file to determine if your computers meet the minimum requirements. Information on the minimum requirements and how to use the Authenticate_Check.exe can be obtained in the “Intel(R) Authenticate OEM Bring Up Guide” included with the Intel Authenticate engine on the HP Manageability website. If this option is enabled, you can select the certificate used to provision or communicate with the Intel Authenticate engine on client computers.

- **Type the location of the security certificate**—Browse to and select an X.509 certificate file, in Personal Information Exchange (PFX) format.

- **Enter the password to unlock your certificate**—Select this option and enter a password, if the certificate is protected by a password.

- **My certificate does not have a password**—Select this option and enter a password, if the certificate is protected by a password.

8.5.3 Windows Logon Policy

This page allows you to configure Windows Logon authentication.

Figure 24 Configure Windows Logon authentication
• Add Credential—Select a credential or a combination of two or three credentials (three factor authentication requires vPro be enabled on the client computers) required for Windows Logon. To remove a configured credential, select the X icon in the upper-right corner of the credential. Each credential can only be used in one combination.
 ○ Please note: If allowing both Intel Authenticate fingerprint as well as classic Fingerprint, both policies must match. For example, if combining Intel Fingerprint with password you should do the same for classic Fingerprint.
 ○ If allowing Intel Authenticate Bluetooth, please note the following. The Intel Authenticate application must be downloaded from the appropriate store for Android or iOS. In order to force pairing of the phone via BLE the application must be open while pairing the phone to the computer. (Please see the document Intel Authenticate Bluetooth Pairing Steps) Also note that as of the writing of this guide some issues have been reported with iPhones receiving error31 or error35 when attempting to authenticate. Until this is corrected or tested in your environment it is suggested that if Intel Authenticate Bluetooth is allowed, another credential be allowed as well in case of Bluetooth failure.
 ○ If allowing use of Intel Authenticate Fingerprint for authentication, it has been reported that some sensors are timing out and not authenticating if no internet connection is available. To resolve this, please ensure the touch area fingerprint sensor reader has the latest driver available. Please see pre-requisites section.
 ○ At the time of this writing, Intel Authenticate supports only one user per device. This is expected to be enhanced in future releases late 2018. If more than one user is going to log into the computer, it is suggested that Intel Authenticate not be enabled in the managed scenario.
• Restore Default—Restores default settings, providing a way to start configuration from a known state.
• Apply Same Settings for Session and VPN policies – Applies the settings from this page to the Session and VPN policy pages automatically.
• Policy Creation Suggestions: When creating a policy keep in mind three types of authentication methods. These factors can include something you know (Password / PIN), something you are (Fingerprint / Face), and something you have (Phone / Contactless card). When allowing these items to be used for authentication it is recommended you combine one from each type of factor for best security. Keep in mind that when creating a policy with something you have, such as a Bluetooth phone, it is recommended that you allow an alternate method of authentication in case the authenticating item is inaccessible.

![Diagram showing three types of authentication methods: something you know, something you have, and something you are.](image-url)
8.5.4 Windows Session and VPN Policy

Figure 25 Configure policy and credentials for Windows sessions and VPN policies

This page allows you to configure the policy and credentials used for a Windows session. This is for authenticating with applications such as Password Manager and Device Access Manager. The following page allows you to set the policy used for VPN authentication. Please see the document entitled VPN_Setup_Instructions for information on how to set up the VPN environment to authenticate with Intel Authenticate.

- Copy Settings from Logon Policy—Automatically copies the policy from Logon Policies
- Allowed Credential Options—Select a credential or a combination of two or three credentials (three factor authentication requires vPro be enabled on the client computers) allowed for Session Logon.

8.5.5 Advanced Options

This page allows you to further configure various credentials managed by HP Client Security.

Figure 26 Configure Advanced Options

- Fingerprint Options
 - Minimum number of fingerprints and Maximum number of fingerprints—Specify the minimum and maximum number of fingerprints a user can enroll. Force number of fingerprints to enroll must be selected.
 - Fingerprint recognition accuracy—Configure the required fingerprint reader accuracy. (Not supported with Intel Authenticate fingerprint)
- **Smart Card Options**
 - Lock PC when smart card is removed—Automatically locks the computer when a smart card used as a credential is ejected.

- **PIN Options**
 - Set allowed PIN length—Specify the minimum number of characters for a user PIN. (Not supported with Intel Authenticate PIN)

8.6 Device Access Manager

8.6.1 Hardware

On this page, you can deploy access permission for a variety of device classes or devices. The access can be set for both administrators and standard users. The following device classes and devices are listed: biometric devices, Bluetooth, imaging devices, network adapters, and ports (COM & LPT).

- **Allow Access for Administrators**—Enables an administrator to access a device class or device
- **Allow Access for Standard User**—Enables a standard user to access a device class or device.
8.6.2 Removable Media

On this page, an IT administrator can set access permissions for removable storage, such as USB drives, and CD/DVD-ROM drives. Configure Removable Media options.

The options can be configured with one of the following rights each for both administrators and standard users:

- **Full Access**—Allows users to add, edit, delete, and read files from the selected removable media.
- **Read Only**—Allows users only to read files from the selected removable media.
- **JITA (Just In Time Authentication)**—Allows users to add, edit, delete, and read files for the amount of time (beginning after the user has entered their credentials) specified in the dropdown box.
- **No Access**—Disables user access to any of the files available in the selected removable media.

8.7 Creating a policy

1. In Configuration Manager, select Assets and Compliance, and then select Overview.
2. Select HP Manageability Integration Kit, right-click Client Security Manager, and then select Create Policy.
3. Enter a Baseline name and start the creating policy wizard.
4. Modify settings. After configuring the settings, select Next.
5. Review the Summary page. If changes are necessary, select the Previous button; otherwise, select Save Policy.
6. After the policy has been saved successfully, select Deploy, and then select the target collections to which to apply the policy.

8.8 Editing a policy

7. In Configuration Manager, select Assets and Compliance, and then select Overview.

8. Select HP Manageability Integration Kit, right-click Client Security Manager, and then select Edit Policy.

9. Select an existing baseline policy to edit, and select OK.

10. Follow the on-screen instructions to complete the wizard.

8.9 Additional information

Policies created with HP Client Security create configuration items for both Client Security Manager and Device Access Manager.

Be sure to configure Intel Authenticate before creating policies. See the Intel Authenticate documentation for more information on whether your computer is supported and how to set up Intel Authenticate.
8.10 Security Provisioning

Remotely managed systems need to be configured to activate HP Sure Run and HP Sure Recover.

HP Sure Run and HP Sure Recover are managed using cryptographically verified commands that use public/private key pairs. In the steps below two separate key pairs are set up:

- The ‘signing key’ which is the key pair whose private key is used to sign the settings being sent.
- The key pair embedded within the ‘key endorsement certificate’ whose private key is used only to sign updates to the ‘signing key’. The client systems will also display the organization string specified in this certificate on the first boot following provisioning.

This provisioning typically happens only once, and the public keys are sent to the client systems as the keys to use for signature validation of future HP Sure Run and HP Sure Recover commands.

8.10.1 Initial Provisioning or Update Provisioning

8.10.1.1 Initial Provisioning – Provision the system for 1st time setup.

The IT Administrator needs to provide both a Signing Key and a Key Endorsement Certificate for initial provisioning. Click on the Browse button next to the text field to select the key/certificate saved on local disks.

Once the key or certificate has been selected, click Submit and then hit Next. Note - The key format supported is Personal Information Exchange (PFX).
8.10.1.2 Update Provisioning

For collections of systems that have been initially provisioned, the IT Administrator can re-provision with an updated signing key.

Navigate to Security Provisioning and select option Update Provisioning.

The IT Administrator needs to provide the signing key to update provisioning. Click on the Browse button next to the text field to select the key saved on local disks.

Once selected, click Submit and then hit Next
8.10.2 Deprovision

For collections of systems that have been provisioned, the IT Administrator can deprovision the systems.

1. Navigate to Security Provisioning and select the option to Deprovision, then click Next.

2. After deprovisioning systems, features of HP Sure Run and HP Sure Recover will be automatically disabled as part of the policy push.

8.10.3 Additional information

8.10.3.1 For the client system to be successfully provisioned

1. A one-time reboot of the client system is required after policy deployment.

2. After the reboot, the end user will be prompted to type in 4-digit security code as displayed on the screen.

3. IT Administrator needs to ensure that the keys required for provisioning are saved in a secure location. The Signing Key is used every time a setting in HP Sure Run or HP Sure Recover is changed. The Key Endorsement Certificate is only used in cases where an update to the Signing Key needs to be made.

8.10.3.2 Update provisioning for provisioned systems

To update both the Signing Key and Key Endorsement Certificate, the IT Administrator will have to first deprovision and then perform Initial Provisioning again.

If the private half of the Signing Key becomes compromised it can be replaced by choosing the "Update Provisioning" option and selecting a new signing key, then clicking Next.

NOTE: Should the private half of the key endorsement certificate become compromised the method used to replace it depends on the state of the private half of the signing key on the client systems.
- If the signing key has not been replaced on the client systems perform a deprovision and do the initial provisioning again with a new signing key pair and a new endorsement certificate. It is important to verify that all systems were successfully updated.
- If the signing key has been replaced on the client systems, it is necessary to use the “Unprovision SPM” option on the “Secure Platform Management” menu in BIOS F10 Setup (this option is not available remotely).

8.10.3.3 For client system to be successfully un-provisioned.

1. Multiple “Evaluate” attempts (within SCCM Configuration Manager) may be required in some cases for deprovisioning to be successful.

2. It is recommended to first send out a policy with HP Sure Run disabled and/or HP Sure Recover disabled followed by a second policy push with Deprovision selected.

8.10.3.4 Systems which fail to be unprovisioned

HP Sure Run / HP Sure Recover can only be managed via the local (HP Client Security Manager) or remote (MIK) approach, on a first come, first served basis. Once enabled and configured using one of these approaches, the other is no longer available until it is unconfigured and disabled. This can be accomplished by using the “Unprovision SPM” option on the “Secure Platform Management” menu in BIOS F10 Setup (this option is not available remotely).

8.10.3.5 What to do if the signing key or endorsement certificate are lost

It is possible to manually deprovision HP Sure Run and HP Sure Recover by using the “Unprovision SPM” option on the “Secure Platform Management” menu in BIOS F10 Setup (this option is not available remotely).

8.10.3.6 BIOS Admin Password

While a BIOS Admin Password is not required to use HP Sure Run or HP Sure Recover, it is recommended to use a BIOS administrator password to prevent an attacker with physical access from disabling HP Sure Run or HP Sure Recover via the HP Computer (BIOS) Setup page.
8.11 HP Sure Run

8.11.1 Overview

HP Sure Run can help you monitor critical applications and alert you in case of external threat. HP Sure Run allows the selection of individual applications or application categories to be monitored.

8.11.2 Configuration

Navigate to HP Sure Run Page. To enable HP Sure Run, select “Enable”.

Please enable automatic updates to download and installed latest Sure Run S/W web release on managed PCs.

IT Administrator will have HP-recommended policy pre-selected, with ability to modify as needed. Listed below are categories and sub-categories available for monitoring.
OS Processes – Sub category “Security”

OS Processes – Sub category “Network”
Technical whitepaper

OS Processes – Sub category “Management” / “Application Infrastructure” / “Core OS”
Technical whitepaper

HP Processes

HP Client Security Suite

- Client Security Manager
- Authentication
- Intel Authenticate
- Windows Logon Policy
- Windows Session Policy
- Intel Authenticate VPN Policy
- Advanced Options
- Device Access Manager
- Hardware
- Removable Media
- Security Provisioning
- HP Sure Run
- HP Sure Recover
- Summary

HP Sure Run

- Protect OS processes, HP security products, HP processes, and 3rd party applications
- Enable protection of critical applications: Enabled
- Enable automatic updates: Enabled
- Enable network isolation: Disabled

Select Categories

- OS Processes
- HP Security Products
- HP Processes
 - HP Notifications
 - HP Hotkey
 - HP 3D Driveguard Service
 - HP WMI Providers
 - 3rd Party Products
 - Users Actions

3rd Party Products

HP Client Security Suite

- Client Security Manager
- Authentication
- Intel Authenticate
- Windows Logon Policy
- Windows Session Policy
- Intel Authenticate VPN Policy
- Advanced Options
- Device Access Manager
- Hardware
- Removable Media
- Security Provisioning
- HP Sure Run
- HP Sure Recover
- Summary

HP Sure Run

- Protect OS processes, HP security products, HP processes, and 3rd party applications
- Enable protection of critical applications: Enabled
- Enable automatic updates: Enabled
- Enable network isolation: Disabled

Select Categories

- OS Processes
- HP Security Products
- HP Processes
 - 3rd Party Products
 - SCCM Client
 - Windows Security Center
 - Antivirus
 - Microsoft Windows Defender
 - Users Actions
Network Isolation

- Ability to enable / disable network isolation on managed system. When enabled it will disconnect managed PC from network for repeated non-compliance of watched items.

Automatic Updates

- Default for performing automatic updates for Sure Run S/W on remote managed device is now enabled.

New Category added - User Actions and Monitored items

HP Products Category – new watched item

- HP Sure Sense
8.11.4 Supported client platforms

- HP Elite products equipped with 8th generation Intel or AMD processors.

8.11.5 Supported client operating systems

- Windows 10 RS3 and above.

8.11.6 Other client system prerequisites

- Microsoft .NET Framework 4.6.1 or higher
- HP Client Security Manager 9.3.11.XXXX or above
- HP MIK Client v2.0.18.1 or higher.

8.11.7 Pre-Requisite

All client systems are provisioned for HP Sure Run Policy to be applied. Please review section on Security Provisioning for details.

8.11.8 Creating a policy

1. In Configuration Manager, select Client Security, and then select Overview.
2. Select HP Manageability Integration Kit, right-click Client Security Manager, and then select Create Policy.
3. Enter a Baseline name and start the creating policy wizard.
4. Navigate to HP Sure Run page. Confirm default selections and modify as needed. Click on Next.

5. On Summary Page under section HP Sure Run selected sub-categories are available for final review and changes. Clicking on edit for any sub-category will re-open HP Sure Run page for policy updates.

6. Select Save Policy.

7. After the policy has been saved successfully, select Deploy, and then select the target collection(s) to apply the policy.
8.11.9 Additional information

1. Client system must be rebooted for policy to be applied successfully. In case a policy fails to deploy, an additional reboot may be required.

2. IT Administrator need to ensure selected application[s] installed on client systems. Otherwise end user will see continuous toaster notifications for applications not installed.

3. Any potential malicious activity on client system will result in:
 - Toaster pop-up displayed to end user.
 - Equivalent HP Sure Run messages logged in Windows Event Viewer.
 - Gen 2 supports network isolation when repeated non compliance detected for watched item.

8.11.8.1 Uninstalling protected applications

If protected applications are no longer needed, the HP Sure Run configuration must be modified to remove the application from the watch list before uninstalling.

8.11.8.2 Interaction between HP Sure Run and HP Sure Recovery

If an OS recovery is performed using HP Sure Recover, HP Sure Run is automatically disabled following the recovery process and must be reenabled.

8.11.8.3 Resetting or clearing of the TPM will result in HP Sure Run failures

HP Sure Run requires the use of TPM 2.0 to perform signing and decryption operations. When the TPM is reset or cleared any keys that HP Sure Run created will be invalidated and cannot be used. The only way to resolve this is to disable HP Sure Run and then reenable it.
8.12 HP Sure Recover

8.12.1 Overview

HP Sure Recover helps you to securely install the operating system from the network with minimal user interaction. Systems with HP Sure Recover with Embedded Reimaging also support installation from a local storage device. Note that the imaging process reformatst the drive so data should be backed up if possible, beforehand or data loss will occur.

Recovery images provided by HP include the basic Windows 10 installer and may optionally install optimized drivers for HP devices. HP recovery images do not include data recovery agents that are not included with the Microsoft Windows 10 media, for example, OneDrive. Corporations can create their own custom images to add corporate settings, applications, drivers, and data recovery agents.

An OS recovery agent performs the steps necessary to install the recovery image. The recovery agent provided by HP performs common steps like partitioning, formatting, and extracting the recovery image to the target device. The HP recovery agent is located on hp.com, so Internet access is required to retrieve it. Corporations can also host the HP recovery agent within their firewall or create custom recovery agents for more complicated recovery environments.

8.12.2 Configuration

Navigate to the HP Sure Recover Page. To enable HP Sure Recover, select “Enable”.

The location to download the recovery agent or recovery image from can also be configured, either from HP or corporate locations. Reimaging can also be performed on a schedule to ensure that the system is in a pre-determined state after the event. Another schedule can be established to check for recovery agent and recovery image updates on systems that support Embedded Reimaging. When newer content is available on the network than what’s currently in the Embedded Reimaging device it will be downloaded to a cache and copied to the Embedded Reimaging device on the next reboot.

8.12.2.1 Recovery from HP

The IT Administrator will have the HP-recommended policy pre-selected, with the ability to modify as needed. The default configuration uses the HP recovery agent to install a basic Windows 10 image with the drivers that are included with the Windows 10 installation media. To install optimized drivers while installing the operating system please select the HP Device Drivers checkbox. No default schedule is established to perform Sure Recover or update the Embedded Reimaging device contents.
8.12.2.2 Custom Recovery

Select the Corporate option to use a custom recovery agent or the HP recovery agent from a corporate distribution point. The IT Administrator needs to provide the URL to download the agent from and the public key to use for agent validation.

Select the Corporate option to restore a customized OS image from a corporate distribution point. The IT Administrator needs to provide the URL to download the image from and the public key to use for image validation.

Note:
- FTP & HTTP are supported for downloading the recovery agent and recovery image.
- Username and password are optional and depend on the way server accounts are configured.
- The Image Verification Key must be provided in "pem" format.
- The Image Location URL must be provided in the following example format: http://server.com/<folder>/<name>.mft
 Refer to section # Additional Information for details on how to create manifest file.
- The Agent Location URL must be provided in the following example format: http://server.com/<folder>/
 Refer to section # Additional Information for details on how to create manifest file.
- The manifest and its signature must be in the same directory on the server, and the signature file must have the same name as the manifest but with a .sig extension.
8.12.2.3 Schedule Recovery on client systems

Recovery can be scheduled on managed devices by enabling the Schedule HP Sure Recover option. Recovery can be scheduled for multiple days each week at a specific time.
8.12.2.4 Schedule Embedded Reimaging device content updates

The contents of the Embedded Reimaging device need to be updated when the recovery agent or recovery image on the network is updated. Since the device is only available during recovery events that occur in the pre-boot environment a Windows task can be created to download updates to a cache and trigger the pre-boot environment to copy from the cache to the Embedded Reimaging device on the next reboot. The scheduled for the task can be established on managed devices by enabling the Check for OS image updates option and can be scheduled for multiple days each week at a specific time.

![HP Client Security Suite](image)

8.12.3 Supported client platforms

- Most commercial systems support recovery from the network. Select configurations also support Sure Recover with Embedded Reimaging. Refer to the product specifications for more details.

8.12.4 Supported client operating systems and system prerequisites

- All client systems must be provisioned for HP Sure Recover policies to be applied. Please review the section on Security Provisioning for details.
- Windows 10 RS3 and above.
- Microsoft .NET Framework 4.6.1 or higher
- HP Client Security Manager 9.3.11.XXXX or above
- HP MIK client v2.0.8.1 for only Gen 1 supported platform
8.12.5 Creating a policy

1. In System Center Configuration Manager, select HP Manageability Integration Kit, right-click Client Security Manager, and then select Create Policy.

2. Navigate to the HP Sure Recover Page. Confirm default selections and modify as needed, then click Next.

3. On the Summary Page under the HP Sure Recover section, selections are available for final review and changes. Clicking edit for any of the item listed will re-open the HP Sure Recover page for policy updates.

4. Select Save Policy.
8.12.6 Steps to create and sign an image manifest

Pre-requisites: a tool to generate sha256 hashes and a tool to create a private/public key pair and sign the manifest file, e.g., PowerShell and OpenSSL.

To create an RSA 2048 bit key pair with OpenSSL:
openssl genrsa -out private_key.pem 2048
openssl rsa -in private_key.pem -pubout -out public_key.pem

1. Create the image manifest file

The manifest filename should follow Windows naming conventions without spaces and must have a .mft extension. The manifest format for corporate images includes a header as the first line, followed by a list of files that make up the image, one per line. The manifest header consists of the manifest format version and image version. The remaining lines in the file must consist of the sha256 hash of the file, its filename and path relative to the URL provisioned for the manifest, and its filesize in bytes.

For example:
mft_version=1, image_version=1
8f161eac8d919708ad8892e5d529b0287b5a9b8604c546e5a66d8737531c1ab os-drivers.wim 535769370

The following methods can be used to create sha256 hashes in Windows:

- certutil -hashfile os-drivers.wim sha256
- Powershell: ps> get-filehash os-drivers.wim -algorithm sha256

2. Sign the manifest

The signature file must have the same filename as the manifest but with a .sig extension.
openssl.exe dgst -sha256 -sign private_key.pem -out image.sig image.mft

Verify that the manifest is signed correctly:
openssl dgst -sha256 -verify public_key.pem -signature image.sig image.mft

3. Place the image files, manifest, and signature file on the distribution point.

- IIS servers require creating mime types of application/octet-stream for .wim, .swm, .mft, .sig, .efi and .sig files for pcbios folder or default web.
- IIS servers also require creating mime types of application/octet-stream for “.*” (dot) files that have no filename extension

Note:
A public/private keypair must be used to sign/validate the manifest file. The Image Verification Key used must be the public key corresponding to the private key used when signing the manifest, otherwise a validation failure will occur when running the recovery process.

8.12.7 Steps to create and sign a recovery agent manifest

Pre-requisites: a tool to generate sha256 hashes and a tool to create a private/public key pair and sign the manifest file, e.g., powershell and OpenSSL.
Technical whitepaper

To create an RSA 2048 bit key pair with OpenSSL:

```bash
openssl genrsa -out private_key.pem 2048
openssl rsa -in private_key.pem -pubout -out public_key.pem
```

1. Create the recovery agent manifest file

The recovery agent manifest file must be named recovery.mft. The manifest format for corporate recovery agents includes a header as the first line, followed by a list of files that make up the recovery agent, one per line. The manifest header consists of the manifest format version, which currently must be 1, and recovery agent version, which must increment each time a new recovery agent is released. The rest of the manifest must include the sha256 hashes of each file included in the recovery agent, the filename and path relative to the URL provisioned for the manifest, and filesize in bytes, one line per file.

For example:

```
version=1, agent_version=1
77bc4fe47f8383f6e7324a46d8aba37c218836a6233843f9a046b1320bd5710 \sources\boot.wim 592969344
cd2c00ce027687ce4a8bdc967f26a8ab82651c9becd703658ba28249702bd \boot\sdi 3170304
e8e52ac8de68a034481f7a43f5c7db583f12a5934b0892158356c554681a4d1 \efi\boot\bootx64.efi 1469240
f198ad15597940db4fb3a606b5a26828834176ba70222c83249a9d77e24ecc7e \efi\sources\boot.wim
```

In this example, the agent location URL should specify the full path to the manifest starting at the document root, but should not include the manifest filename, e.g., `http://server.com/agents`, where the manifest is in a directory called "agents" within the document root and the remaining files are located in the directory tree shown below:

```
│
├───recovery.mft
├───recovery.sig
│   ├───boot
│   │   └───boot.sdi
│   └───efi
│       ├───boot
│       │   └───bootx64.efi
│       └───microsoft
│           └───boot
│               └───bcd
└───sources
    └───boot.wim
```

The following methods can be used to create sha256 hashes in Windows:

- `certutil -hashfile os-drivers.wim sha256`
- `Powershell: ps> get-filehash os-drivers.wim -algorithm sha256`

4. Sign the manifest

The signature file must be named recovery.sig. For example, to sign the manifest with OpenSSL:

```bash
openssl.exe dgst -sha256 -sign private_key.pem -out recovery.sig recovery.mft
```

Verify that the manifest is signed correctly:

```bash
openssl dgst -sha256 -verify public_key.pem -signature recovery.sig recovery.mft
```

5. Place the agent files, manifest, and signature file on the distribution point.

- IIS servers require creating mime types of application/octet-stream for .wim, .swm, .mft, .sig, .efi and .sig files for pcbios folder or default web.
- IIS servers also require creating mime types of application/octet-stream for "." (dot) files that have no filename extension
Technical whitepaper

Note:
A public/private keypair must be used to sign/validate the manifest file. The Image Verification Key used must be the public key corresponding to the private key used when signing the manifest, otherwise a validation failure will occur when running the recovery process.

8.12.8 Interaction between HP Sure Run and HP Sure Recover

If an OS recovery is performed using HP Sure Recover, HP Sure Run is automatically disabled following the recovery process and must be reenabled.
9 Device Guard (Windows 10 only)

Device Guard is included with Windows 10 and provides hardware- and software-based malware protection, by verifying that applications and drivers are from a trusted source before they are allowed to run. In HP MIK, Device Guard policies provide an easy option for an IT administrator to enable Device Guard.

9.1 Supported client platforms

- HP commercial computers (2015 or later)

9.2 Supported client operating systems

- Windows 10

9.3 Other client system prerequisites

- Microsoft .NET Framework 4.0 or higher
- HP MIK

9.4 Creating a policy

1. In Configuration Manager, select Assets and Compliance, and then select Overview.
2. Select HP Manageability Integration Kit, right-click Device Guard, and then select Create Policy.
3. Enter a Baseline name and then follow the on-screen instructions to complete the wizard.
4. Select one of the following options:

 - Activate device guard support
 - This option will enable device guard virtualization based security. A reboot will be required.

 - Deactivate device guard support
 - This option will turn off Device Guard virtualization based security. Please review the state of the machine after the operation completes, to determine if Hyper-V or virtualization extensions can be safely turned off.

 - BIOS Password is required to apply this policy.
Create a policy to activate device guard support—Modifies the registry on target systems, enables the virtualization extension, enables Hyper-V, and enables Device Guard virtualization-based security.

The following registry settings are modified:

1. [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\DeviceGuard]
 1. "EnableVirtualizationBasedSecurity"=dword:00000001
 2. "HypervisorEnforcedCodeIntegrity"=dword:00000001
 3. "RequirePlatformSecurityFeatures"=dword:00000002

ii. [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa]
 1. "LsaCfgFlags"=dword:00000001

The following Windows features are modified:

i. Microsoft Hyper-V and Isolated User Mode are enabled.

The following BIOS settings are modified (if they are available on the client computer)

i. SVM CPU Virtualization is enabled on AMD Platforms

 ii. Virtualization Technology (VTx) is enabled on Intel platforms

 iii. Virtualization Technology for Directed I/O (VTd) is enabled on Intel Platforms

 iv. TPM Device is set to available

 v. TPM State are set to available

 vi. CD-ROM Boot is disabled

 vii. PXE Boot is disabled

 viii. USB Storage Boot is disabled

 ix. Legacy Boot is disabled

 x. UEFI Boot is enabled

 xi. Configure Legacy Boot Support is set to Legacy Support Disable and Secure Boot Enable

Create policy to deactivate device guard support—Disables Device Guard virtualization-based security.

Deactivating Device Guard reverts registry settings to their default settings.

i. Hyper-V is disabled.

 ii. BIOS Virtualization is disabled.

5. Review the Summary page. If changes are necessary, select the Previous button; otherwise, select Save Policy.

6. After the policy has been saved successfully, select Deploy, and then select the target collections to which to apply the policy.
9.5 Editing policy

1. In Configuration Manager, select Assets and Compliance, and then select Overview.
2. Select HP Manageability Integration Kit, right-click Device Guard, and then select Edit Policy.
3. Select an existing baseline policy to edit, and then select OK.

![Configuration Baselines](image)

Figure 29 Edit baseline policies

4. Complete the procedure for steps 4 through 6 in Creating a policy.

9.6 Additional information

For client computers, the HP MIK Device Guard policy log is created in %PROGRAMDATA%\HP\HP MIK\Logs.

The following error codes might be encountered:

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>1</td>
<td>Item is not known. There might be an installation error.</td>
</tr>
<tr>
<td>2</td>
<td>Operating system not supported. See the operating system requirements.</td>
</tr>
<tr>
<td>3</td>
<td>CPU/Chipset not supported. See the platform requirements.</td>
</tr>
<tr>
<td>4</td>
<td>Outdated Graphics Driver. Update the graphics driver before attempting the operation again.</td>
</tr>
<tr>
<td>Error code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Failed to enable BIOS CPU Virtualization</td>
</tr>
<tr>
<td>6</td>
<td>Failed to set BIOS TPM Device as Available</td>
</tr>
<tr>
<td>7</td>
<td>Failed to disable BIOS USB device boot</td>
</tr>
<tr>
<td>8</td>
<td>Failed to disable BIOS PXE boot</td>
</tr>
<tr>
<td>9</td>
<td>Failed to disable BIOS Floppy boot</td>
</tr>
<tr>
<td>10</td>
<td>Failed to disable BIOS CD-ROM boot</td>
</tr>
<tr>
<td>11</td>
<td>Failed to change BIOS Boot Mode to UEFI Native (Without CSM)</td>
</tr>
<tr>
<td>12</td>
<td>Failed to enable BIOS Secure Boot</td>
</tr>
<tr>
<td>13</td>
<td>Failed to set Hyper-V</td>
</tr>
<tr>
<td>14</td>
<td>Failed to set Isolated User Mode</td>
</tr>
<tr>
<td>15</td>
<td>Error in setting Registry value(s)</td>
</tr>
<tr>
<td>16</td>
<td>Failed to modify Windows features</td>
</tr>
</tbody>
</table>
10 HP Sure Start

HP Sure Start protects the HP BIOS from any malware or virus threat by verifying the integrity of the BIOS when the computer starts or restarts, by default. Additional policies can increase the frequency with which the BIOS is verified and the BIOS event log policy can capture any event.

HP Sure Start policy management in HP MIK allows you to manage policies remotely and ensures the appropriate logging and notification of malicious attacks and security breaches in BIOS and the subsequent repairs.

![Figure 30] HP Sure Start

10.1 Supported client platforms
- HP 700 series and higher commercial computers (2014 or later)

10.2 Supported client operating systems
- Windows 10
- Windows 8.1
- Windows 7

10.3 Other client system prerequisites
- Microsoft .NET Framework 4.0 or higher
- HP MIK
10.4 User interface

10.4.1 BIOS Security Settings tab

- **Verify Boot Block on every boot**—Verifies that authorized modifications to the system boot image are stored in the non-volatile memory.

 When enabled, HP Sure Start verifies the integrity of the HP firmware boot image when the computer starts or restarts, or exits Hibernation or Sleep mode. This setting provides higher security, but can increase start time.

 When disabled, HP Sure Start verifies the integrity of the HP firmware boot image when the computer starts or exits Hibernation or Sleep mode.

- **Dynamic Runtime Scanning of Boot Block**—Verifies the integrity of the HP boot image periodically while the computer is on and the operating system is running.

 When enabled, HP Sure Start verifies the integrity of the HP boot image every 15 minutes.

- **Lock BIOS Version**—Disables BIOS updates.

- **Sure Start BIOS Setting Protection**—Disables changes to all critical BIOS settings and provides enhanced protection for these settings via the HP Sure Start non-volatile memory.

 The BIOS administrator password is required to enable this setting.

- **Enhanced HP Firmware Runtime Intrusion Prevention and Detection**—Monitors HP system firmware executing out of main memory while the operating system is running.

10.4.2 Events and Recovery Settings tab

These setting control HP Sure Start behavior after a critical security event, such as the BIOS being attacked or corrupted, is identified.
• **Sure Start Security Event Policy**—Select Log Event Only to log all critical security events in the HP Sure Start Audit Log within the HP Sure Start non-volatile memory. Select Log Event and Power Off System to power off the system after detecting and logging a HP Sure Start Security Event. Because data might be lost, HP recommends using this setting only in situations where security integrity of the system is a higher priority than the risk of potential data loss.

• **BIOS Data Recovery Policy**—Select Automatic to automatically repair any firmware integrity issues in the non-volatile (flash) memory. Select Manual to repair firmware integrity issues when the Esc+Windows+Up Arrow+Down Arrow key combination is pressed. HP recommends this setting for IT administrators only.

• **Prompt on Network Controller Configuration Change**—Monitors the network controller configuration and prompts the local user if any changes are detected compared to the factory configuration.

• **Save/Restore Hard Drive Partition Table**—Saves the Master Boot Record (MBR) or the GUID Partition Table (GPT) of the system hard drive.
10.4.3 Audit Log tab

![Figure 33 HP Sure Start Audit Log](image)

If Gather Sure Start event logs is select, HP MIK retrieves HP Sure Start event logs from the client computers and stores them in the Configuration Manager hardware inventory.

10.5 Creating a policy

1. In Configuration Manager, select Assets and Compliance, and then select Overview.
2. Select HP Manageability Integration Kit, right-click Sure Start, and then select Create Policy.
3. Enter a Baseline name, and then select Start Policy.
4. Modify the settings, and then click Next.

5. Review the Summary page. If changes are necessary, select the Previous button; otherwise, select Save Policy.

6. After the policy has been saved successfully, select Deploy, and then select the target collections to which to apply the policy.

10.6 Editing a policy

1. In Configuration Manager, select Assets and Compliance, and then select Overview.

2. Select HP Manageability Integration Kit, right-click Sure Start, and then select Edit Policy.

3. Select an existing baseline policy to edit and select OK to continue the wizard.

4. Complete the procedure for steps 4 through 6 in Creating a policy.

10.7 Additional information

Not all features are supported on all systems.

Certain systems might require a manual action to restart after a configuration change.
10.7.1 Audit logs

For client computers, the HP MIK Sure Start policy log is created in `%PROGRAMDATA%\HP\HP MIK\Logs`. If enabled, HP MIK retrieves HP Sure Start logs as part of the Configuration Manager hardware inventory.

To view the audit log entries:

1. In Configuration Manager, select Assets and Compliance, select Overview, and then select Devices.
2. Right-click a device, select Start, and then select Resource Explorer.
3. Select Hardware, and then select HP Sure Start Audit Logs.

![Figure 36 HP Sure Start Audit Logs](image-url)
11 HP Sure View

11.1 Overview
HP Sure View eliminates the need to carry additional tools to guard sensitive information. Users simply press the fn+F2 key to immediately transition the PC to privacy mode, which reduces up to 95 percent of visible light when viewed at an angle, making it difficult for others to view information on the screen.

11.2 Supported Client Platforms
- HP EliteBook 840 G3
- HP EliteBook 1040 G3

11.3 Supported client operating systems
- Windows 10
- Windows 8.1
- Windows 7

11.4 Creating a policy
1. In Configuration Manager, select Assets and Compliance, and then select Overview.

![Figure 37 HP SureView Baseline configuration](image)
2. Select HP Manageability Integration Kit, right-click SureView, and then select Create Baseline.

3. Enter a Baseline name, and then click ‘OK’ to save the Baseline with that name.

4. HP Sure View will be enabled by default.

Figure 38 HP Sure View
5. Click 'Next' and save the policy. Then select the collection the policy should be applied to.

6. Click 'Deploy' to apply the policy to the client systems within the collection.

11.5 Editing a policy

1. In Configuration Manager, select the policy you want to edit.
2. Select HP Manageability Integration Kit, right-click SureView, and then select Edit Policy.

3. Make any necessary changes, and then click ‘OK’ to save the policy with that name.
12 TPM Firmware Update

The TPM firmware update policy helps perform the following actions:

- Upgrading from an older TPM 1.2 firmware to a newer TPM 1.2 firmware
- Upgrading from an older TPM 2.0 firmware to a newer TPM 2.0 firmware
- Converting from TPM 1.2 to TPM 2.0
- Converting from TPM 2.0 to TPM 1.2

12.1 Supported client platforms

12.1.1 Desktop computers:

- HP EliteDesk 705 G2 Desktop Mini PC
- HP EliteDesk 800 35W G2 Desktop Mini PC
- HP EliteDesk 800 65W G2 Desktop Mini PC
- HP EliteDesk 800 G2 Small Form Factor PC
- HP EliteDesk 800 G2 Tower PC
- HP EliteOne 800 G2 23-inch Non-Touch All-in-One PC
- HP EliteOne 800 G2 23-inch Touch All-in-One PC
- HP ProDesk 400 G2 Desktop Mini PC
- HP ProDesk 400 G3 Microtower PC
- HP ProDesk 400 G3 Small Form Factor PC
- HP ProDesk 480 G3 Microtower PC
- HP ProDesk 490 G3 Microtower PC
- HP ProDesk 498 G3 Microtower PC
- HP ProDesk 600 G2 Desktop Mini PC
- HP ProDesk 600 G2 Microtower PC
- HP ProDesk 600 G2 Small Form Factor PC
- HP ProOne 400 G2 20-inch Non-Touch All-in-One PC
- HP ProOne 400 G2 20-inch Touch All-in-One PC
- HP ProOne 600 G1 All-in-One PC
- HP ProOne 600 G2 21.5-inch Non-Touch All-in-One PC
- HP RP9 G1 Retail System Model 9015
- HP RP9 G1 Retail System Model 9018

12.1.2 Notebook computers:

- HP EliteBook 1030 G1 Notebook PC
- HP EliteBook 1040 G3 Notebook PC
- HP EliteBook 725 G3 Notebook PC
- HP EliteBook 745 G3 Notebook PC
- HP EliteBook 755 G3 Notebook PC
- HP EliteBook 820 G3 Notebook PC
- HP EliteBook 840 G3 Notebook PC
- HP EliteBook 850 G3 Notebook PC
- HP EliteBook Folio G1 Notebook PC
- HP Elite x2 1012 G1
- HP ProBook 430 G3 Notebook PC
- HP ProBook 440 G3 Notebook PC
- HP ProBook 450 G3 Notebook PC
- HP ProBook 455 G3 Notebook PC
- HP ProBook 470 G3 Notebook PC
- HP ProBook 640 G2 Notebook PC
- HP ProBook 645 G2 Notebook PC
- HP ProBook 650 G2 Notebook PC
- HP ProBook 655 G2 Notebook PC
- HP ZBook 15 G3 Mobile Workstation
- HP ZBook 17 G3 Mobile Workstation
- HP ZBook Studio G3 Mobile Workstation

12.2 Supported client operating systems
- Windows 10
- Windows 8.1
- Windows 7 (TPM 1.2 only)

12.3 Other client system prerequisites
- Infineon SLB9670 TPM chip
- Latest commercial BIOS
- Microsoft .NET Framework 4.0 or higher.
- HP MIK

12.4 Creating a policy
1. In Configuration Manager, select Assets and Compliance, and then select Overview.
2. Select HP Manageability Integration Kit, right-click TPM Firmware Update, and then select Create Policy.
3. Enter a Baseline name, and then follow the on-screen instructions to complete the wizard.
4. Select the target TPM version, and then select Create Policy. See Additional information for warnings and limitations.
5. Review the Summary page. If changes are necessary, select the Previous button; otherwise, select Save Policy.

6. After the policy has been saved successfully, select Deploy, and then select the target collections to which to apply the policy.

12.5 Editing a policy

 1. In Configuration Manager, select Assets and Compliance, and then select Overview.

 2. Select HP Manageability Integration Kit, right-click BIOS Configuration, and then select Edit Policy.

 3. Select an existing baseline policy to edit, and then select OK to continue the wizard.
4. Complete the procedure for steps 4 through 6 in Creating a policy.

12.6 Additional information

WARNING!
To avoid a complete loss of data, the primary drive must be in a decrypted state before pushing this policy. The policy has a built-in check for BitLocker and WinMagic disk encryption solutions only. If BitLocker or WinMagic drive encryption is used, the policy exits with an appropriate error code logged. The policy does not detect other disk encryption solutions.

TPM can be converted between TPM 1.2 and TPM 2.0 up to a maximum of 64 times.

Converting TPM involves potentially upgrading to a newer TPM firmware. The following rules govern this operation:

- If the system has TPM 1.2 and the target is TMP 2.0, TPM 2.0 is enabled and upgraded with the latest firmware version.
- If the system has TPM 2.0 and the target is TPM 1.2, TPM 1.2 is enabled and upgraded with the latest firmware version.
- If the system has TPM 1.2 and the target is TPM 1.2, TPM 1.2 is upgraded to the latest firmware version.
- If the system has TPM 2.0 and the target is TPM 2.0, TPM 2.0 is upgraded to the latest firmware version.
- This procedure requires a manual action to complete the reboot.
13 HP WorkWise (Windows 10 only)

HP WorkWise is a smartphone-to-computer integrated HP app that helps you secure, monitor, and simplify your PC experience.

Users can download apps from the Microsoft app store, but IT administrators can specify which features are available on the client computers.

13.1 Supported client platforms

- HP commercial computers (2016 or later)

13.2 Client system prerequisites

- Windows 10 Anniversary Update
- Microsoft .NET Framework 4.0 or higher.

The HP WorkWise software must be installed on the client computers. For app-specific requirements, see the HP WorkWise documentation.

13.3 User interface

The user interface for this app allows you to enable or disable the HP WorkWise features.
13.4 Creating a policy

1. In Configuration Manager, select Assets and Compliance, and then select Overview.
2. Select HP Manageability Integration Kit, right-click HP WorkWise, and then select Create Policy.
3. Enter a Baseline name, and then follow the on-screen instructions to complete the policy wizard.
4. Modify the settings.
5. Review the Summary page. If changes are necessary, select the Previous button; otherwise, select Save Policy.
6. After the policy has been saved successfully, select Deploy, and then select the target collections to which to apply the policy.

13.5 Editing a policy

1. In Configuration Manager, select Assets and Compliance, and then select Overview.
2. Select HP Manageability Integration Kit, right-click HP WorkWise, and then select Edit Policy.

3. Select an existing baseline policy to edit and select OK to continue the wizard.

4. Complete the procedure for steps 4 through 6 in Creating a policy.
14 HP Client Driver Packs

14.1 Creating and importing an HP driver pack

The Create and Import HP Client Driver Pack option displays the drivers for supported HP products. This works similarly to the option previously available with HP CIK.

1. In Configuration Manager, select Software Library, select Overview, select Operating Systems, and then select Driver Packages.

2. Select HP Client PCs, and then select Create and Import HP Client Driver Pack. The Create and Import HP Client Driver Pack wizard is displayed.

3. Select the Operating system.

4. Only the products that support driver-pack creation are displayed in the Available products column. Optionally, enter keywords into the HP product name box, and then press Enter to filter the list of available products.

5. Select an available product, and then select the right-arrow button to add the product to the Selected products column.

6. Repeat step 5 to select another product, as necessary. HP recommends selecting products of the same family model to create a driver pack with the optimal relevant drivers. Also, HP recommends selecting no more than five products per driver pack.

For example, you might select HP ProBook 640 G1 Notebook PC and HP ProBook 650 G1 Notebook PC to create an HP ProBook 600 series G1 Notebook PC driver pack.

![Create and Import HP Client Driver Pack](image)

Figure 45 HP Client Driver Pack selection
7. Click Next.

8. By default, the Create driver package with the selected drivers below import option is selected. This creates a driver package for the selected drivers.
 a. Enter a Name for the driver package. Enter a Version and a Comment, if necessary.
 b. Under drivers, verify that the drivers to include in the driver package are selected and be sure that all other drivers are cleared.

![Create and Import HP Client Driver Pack]

Figure 46 HP Client Driver Pack Create and Import

— or —

To import drivers to auto apply or to create a driver pack later, select the Import driver(s) only import option. By default, the Driver category for imported drivers is HP Client Driver. Select a different driver category, if necessary.
9. Click Next.

10. If you are creating a driver package, configure the distribution points and network shares as follows:

 a. Select the Distribution point(s) to assign the driver pack to specific destinations. Cloud distribution points are not supported.

 b. Select the location for Configuration Manager to save the Drivers and Driver package(s). Be sure that the specified locations have sufficient rights to be accessed by all necessary user accounts.
If you are importing drivers only, select the location for Configuration Manager to save the Drivers. Be sure that the specified location has sufficient rights to be accessed by all necessary user accounts.

If you require the import to stop when an error is encountered, clear the Continue on errors option. By default, this box is selected. When multiple drivers are selected, the next selected drivers are imported if the current driver fails to import.
13. By default, HP MIK uses Hypertext Transfer Protocol (HTTP) to download the selected drivers. If necessary, select FTP.

14. Any change to the settings in Select network share(s) and other settings enables the Save settings button. Select this button to save the settings for subsequent driver and driver package creation or import procedures.

14.2 Downloading and importing HP driver packs

The Download and Import Driver Packs option displays a list of HP products with driver packs. This works similarly to the option previously available with HP CIK.

1. In Configuration Manager, select Software Library, select Overview, select Operating Systems, and then select Driver Packages.

2. Select HP Client PCs, and then select Download and Import Driver Packs.

3. Select an Operating system.

4. The Available products column displays the products that support driver packs. Optionally, enter keywords into the HP product name box and press Enter to filter the list of available driver packs.

5. Select a driver pack to include in the targeted operating system deployment, and then select the right arrow button to add the products to the Selected products column. The associated driver packs of the selected products are displayed in the Available driver packs list.

6. Optionally, select distribution points to assign the imported driver packs to a specific destination; however, cloud distribution points are not supported.

7. If necessary, change the default location for Configuration Manager to save the drivers and driver package. Be sure that the specified location has sufficient rights to be accessed by all necessary user accounts.

8. Any change to this path or other settings enables the Save settings button. Select this button to save the settings for subsequent driver package download and import procedures.

9. If the driver pack download and import process must stop when an error is encountered, clear the Continue on errors option. By default, this box is selected. When multiple driver packs are selected, the process continues to the next selected driver pack if the download and import process of the current driver pack fails.

10. By default, HP MIK uses HTTP to download the driver packs. If necessary, select FTP.

11. Select Download and Import to start the driver pack download and import process.

NOTE:
The Reset Form button clears all selections.
During the download and import process, a dialog box displays the current operation and progress. The process downloads the selected driver packs and imports them into Configuration Manager. If one or more selected driver packs already exist in Configuration Manager, the process prompts the user to skip or overwrite the existing driver packs.

After the process is complete, a summary of the import status of each driver pack is displayed.
The imported driver packs are created in Driver Packages > HP Client Driver Packages.

Before the imported driver packs can be used in a task sequence, they need to be pushed out to the distribution points. If no distribution points were selected in the download and import dialog box or if additional distribution points are needed, select each imported driver pack, select Distribute Content, and then follow the on-screen instructions to push the driver packs to the distribution points.

NOTE:
This process requires a continuous internet connection to ftp.hp.com. If the driver pack information cannot be retrieved from ftp.hp.com on the device with the Configuration Manager console installed, open a browser session to verify the connection, and then try to complete the process again.

If there is no internet connection to ftp.hp.com from the device with the Configuration Manager console installed, obtain the HP driver packs via one of the following methods and use the Import Downloaded Driver Pack menu item instead.

14.3 Obtaining HP driver packs

There are several ways to obtain driver packs:

NOTE:
Not all driver packs available for download can be used with HP MIK. Driver packs listed under categories such as System – Software Management cannot be imported with HP MIK.

- HP Client Management Solutions website
- HP Support product pages
- HP SoftPaq Download Manager (SDM)

To obtain driver packs using the HP Client Management Solutions website:

2. Under Resources, select HP Driver Packs.
3. Select 32-bit or 64-bit, depending on the target operating system.

4. Download the appropriate driver pack for the target client computer and operating system.

To obtain driver packs using HP Support product pages:

2. Select Get software and drivers.
3. Enter the client computer model number, and then select Find my product.
4. Select the client computer.
5. Select your language and operating system.
6. Under Manageability – Tools, download the appropriate driver pack.

NOTE: WinPE driver packs listed on the download page are used only to create HP client boot images.

To obtain driver packs using HP SDM:

2. Under Resources, select HP Download Library.
3. Download SoftPaq Download Manager.
4. Select Start, select All Programs, select HP, and then select HP SoftPaq Download Manager.
5. Select Show software for all supported models.
6. Select English – International as the target language.
7. Under Product Catalog, select the target platform and operating system, and then select Find Available SoftPaqs.
8. Download the driver packs in the category Manageability – Driver Pack.

14.4 Creating driver packs using HP SDM

To create driver packs using HP SDM (version 3.5.2.0 or higher):

1. Select Start, select All Programs, select HP, and then select HP SoftPaq Download Manager.
2. Select Tools, and then select Configuration Options.
 a. On the OS Filter tab, select the Win7, Win 8, or Win 8.1 operating system.
 b. On the Language Filter tab, select English – International as the target language.
 c. Select OK.
3. On the Build Driver Pack tab, select the plus sign (+) next to a product category to display all products in the category. Select products to add to the driver pack.
4. Select the platforms and operating systems, and then select Find Available SoftPaqs.
5. Select the SoftPaqs to include in the driver pack.

6. In the Download SoftPaqs window, select an action from the drop-down menu next to the Download button:
 - Build CAB File—Select this option to use Microsoft Deployment Toolkit or HP MIK in conjunction with Configuration Manager to deploy the driver pack.
 - Build ZIP File—Select this option to use HP MIK with Configuration Manager or to manually deploy the driver pack through another application.

7. Select Download.

8. If the EULA appears, accept the license and continue.

9. The Driver Pack Builder screen displays boxes for the Driver Pack Name, OS-Bitness, and Output directory. Enter any necessary information, and then select Build.

10. A message is displayed indicating that the driver pack build is complete. Select OK.

The driver pack and associated logs are now available in the output directory.

14.5 Importing HP driver packs

1. In Configuration Manager, select Software Library, select Overview, select Operating Systems, and then select Driver Packages.

2. In the HP Client PCs section of the ribbon menu, select Import Driver Pack.

3. Under Driver package, select Browse, and then select the HP driver pack to be imported.

4. Optionally, select distribution points to assign the imported driver packages to a specific destination; however, cloud distribution points are not supported.

5. Change the default location for Configuration Manager to save the drivers and driver package, if necessary. Be sure that the specified locations have sufficient rights to be accessed by all necessary user accounts. The location per user is saved automatically after a successful importation.

 Any change to this path or other settings enables the Save settings button. Select this button to save the settings for subsequent driver package download and import procedures.

6. Select Import.
During the importation process, a dialog box displays the current operation and progress.

After the importation process is complete, the imported driver pack is available in Software Library under HP Client Driver Packages. Before the imported driver pack can be used in a task sequence, it needs to be pushed out to the distribution points. If no distribution points were selected during the import process or if additional distribution points are needed, select the driver pack and then select Distribute Content.
15 HP Client Boot Images

15.1 Obtaining a WinPE driver pack

1. Go to http://www.hp.com/go/clientmanagement

2. Under Resources, select HP Download Library.

3. Download either HP WinPE Driver Pack 32-bit or HP WinPE Driver Pack 64-bit.

Not all platforms or configurations require the WinPE 4.0 driver pack, as WinPE 4.0 already contains many of the necessary hardware drivers needed to support operating system deployment. HP recommends creating and using the WinPE 4.0 driver pack, because the added drivers do not impact systems or configurations that do not need them.

WinPE 5.0 natively supports HP commercial desktops, notebooks, and workstations shipping from 2011 to 2013. Platforms shipping in 2014 or later might require the WinPE 5.0 driver pack. The WinPE 5.0 driver pack cannot be used with WinPE 4.0, nor can the WinPE 4.0 driver pack be used with WinPE 5.0.

Because each version of Configuration Manager supports the customization or addition of drivers and components to a specific version of WinPE only, HP MIK Create Boot Image provides limited support. For more information about the specific requirements for WinPE customization, go to http://technet.microsoft.com/en-us/library/dn387582.aspx.

Before a boot image is made available to a distribution point, Configuration Manager might use Windows Assessment and Deployment Kit (ADK), particularly DISM.exe, to inject drivers to a boot image. DISM might fail to appropriately recognize the signature of some boot-critical drivers added to the boot image because DISM has certain requirements that depend the version of ADK and the operating system. For more information, go to http://technet.microsoft.com/en-us/library/hh825070.aspx.

The HP MIK Create Boot Image feature leverages the Configuration Manager and ADK customization support for boot images, so the limitations of HP MIK are dependent on the Configuration Manager version, the ADK version, and the operating system version of the site server.

15.2 Importing a WinPE driver pack and creating boot images

1. In Configuration Manager, select Software Library, select Overview, select Operating Systems, and then select Boot Images.

2. In the HP Client PCs section of the ribbon menu, select Create Boot Image.

3. Under HP client WinPE driver pack, select Browse. Select the HP WinPE driver pack to import. HP MIK shows only the boot images appropriate for the selected WinPE driver pack and supported for customization by Configuration Manager.

4. Select the base boot images to use, and then select Create to create boot images with drivers from the selected HP WinPE driver pack.

5. Optionally, select distribution points to assign the boot images to a specific destination; however, cloud distribution points are not supported.

6. Change the default locations for Configuration Manager to save the drivers, the driver package, and the boot images, if necessary. Be sure that the specified locations have sufficient rights to be accessed by all necessary user accounts.
The location per user is saved automatically after a successful importation. Any change to this path or other settings enables the Save settings button. Select this button to save the settings for subsequent boot image creation and driver or driver pack import procedures.

![Create HP Client Boot Image(s)](image)

Figure 53 Create HP Client Boot Image(s)

Depending on the architecture of the base image and the architecture supported by the Windows Preinstallation Environment boot image, x86 and/or x64 images are created. HP Windows Preinstallation Environment driver packs for Windows 10 contain drivers for 64-bit boot images. Windows Preinstallation Environment driver packs for previous versions of Windows contain drivers for both 32- and 64-bit boot images.

After the process is complete, the new boot images are created in Boot Images > HP Client Boot Images.

To access the command prompt during the WinPE portion (F8) for debugging purposes:

1. Right-click the image and select Properties, and then select Customization.
2. Select Enable command support (testing only).

Before these boot images can be used in a task sequence, the boot images need to be pushed out to the distribution point. If no distribution points were selected in the import process or if additional distribution points are needed, or if there is a change to the boot image properties, select the boot image and then select Distribute Content.
16 HP Client Task Sequences

16.1 Creating a deployment task sequence

1. In Configuration Manager, select Software Library, select Overview, select Operating Systems, and then select Task Sequences.

2. In the HP Client PCs section of the ribbon menu, select Create Deployment Task Sequence.

3. Select a template from the Task Sequence Template drop-down menu.

 The following examples show how to reference HP tools to aid with the deployment process.

4. Enter information as instructed.

5. If you do not plan to use BitLocker Drive Encryption (BDE), clear the Include BitLocker Drive Encryption steps option. For more information on Configuration Manager BDE steps, go to https://technet.microsoft.com/enus/library/hh846237.aspx.

6. Select Create to create a basic, bare metal deployment task sequence for HP client systems. A message box displays confirmation of the successful creation of the task sequence.
IMPORTANT!
Depending on the selected template, some of the steps in the created task sequence are destructive, including the following:

- Remove Disk Partitions (diskpart clean)
- Format and Partition Disk
- Call Intel RSTCli Utility – Delete All Metadata
- Call Intel RSTCli Utility – Configure RAID Volume

HP recommends creating task sequences and testing them thoroughly in a test environment prior to any production deployments. HP is not responsible for any data loss caused by the created task sequences.

16.2 Configuring task sequences

Refresh the list of task sequences to see the created task sequence. Before using the task sequence, additional configuration must be performed for the task sequence to successfully execute.
The template Configure RAID Example contains specific steps that are discussed in Using the Configure RAID Example template.

1. Be sure that the target platform driver pack has been imported. See Importing HP driver packs.
2. Right-click the task sequence and select Edit.

The following figure is a task sequence created by the Default Template for Windows 7 or Windows 8. This task sequence can be used with either Windows 7 or Windows 8.

There is also the Default Template for Windows 10. The default disk partition configuration in the templates is different. For Windows 10, the recommended Windows recovery tool partition is at the end of the drive; in previous versions of Windows, it was at the beginning. The default partition takes up 1% of the disk space. Change this value to your Windows recovery image size, usually at least 500 megabytes (MB).

Figure 55 HP Client Task Sequence Example Task Sequence Editor

3. Depending on the target operating system of the deployment, some or all of the following steps need to be configured:

- Set BIOS Configuration (Input File)—Allows the setting of BIOS settings via BCU. The TPM must be turned on and initialized before it can be used. See the section Configuring the Set BIOS Configuration task step for more details.
- Remove Disk Partitions (diskpart clean)—This step does not need configuration; however, for the task sequence to run properly on all disk scenarios, the deployment and all packages and content within it need to
be configured to allow access to the content directly from the network. See Allowing access to deployment content for more information. If this step is not needed, disable the step.

- Format & Partition Disk—Enables the appropriate step to format and partition the disk to your need. For example, if deploying to a system that is set to UEFI or UEFI Hybrid (with CSM), enable the EFI format step and be sure that the BIOS format step is disabled.
- Apply Driver Package—Specifies the HP driver package imported for the target platform and operating system.
- Apply Network Settings—Specifies the workgroup or domain options for your deployment and enter the correct account information for the task sequence to join an Active Directory domain, if necessary. Review each additional task sequence step and set parameters as needed.

4. After all task sequence steps have been configured, select either OK or Apply to save changes. The task sequence can now be modified, and task sequence steps can be added as needed to perform your operations.

16.2.1 Assigning a boot image

1. Right-click the task sequence and select Properties.
2. Select the Advanced tab and then select Use a Boot Image.
3. Select Browse and then select the appropriate boot image from the HP Client Boot Images folder.

NOTE:
Select the boot image with the same architecture as the operating system being deployed (for example, an x86 image for an x86/32-bit operating system and an x64 image for an x64/64-bit operating system).

16.2.2 Allowing access to deployment content

To run properly, the Remove Disk Partitions (diskpart clean) step in the HP MIK task sequence needs to be run directly from the network. For this to happen, all packages and content in the task sequence (including the boot image) need to be configured as follows:

1. Right-click the content/package and select Properties.
2. Select the Data Access tab, and select Copy the content in this package to a package share on distribution points.
3. Select OK.
4. If necessary, select the Access content directly from the distribution point option on the Distribution Points step of the wizard.

If this step is not needed, or if you wish to use the download content setting, disable this task sequence step. If you still need to be able to run this step when the Download content locally option is selected, see The Remove Disk Partitions (diskpart clean) step is needed, but I cannot use the Access Content Directly option for possible workarounds.

5. After the task sequence has been modified and amended as needed, deploy to the target collection and distribute content as needed to use the task sequence. Follow the on-screen instructions to complete this process.

16.3 Configuring the Set BIOS Configuration task step

The Set BIOS Configuration (Input File) task step allows the configuration of BIOS settings on platforms managed by HP. This Run Command Line task uses BCU.
Figure 56 Configuring the Set BIOS Configuration task step

This task sequence step is run with the following command line:

```plaintext
RunBCU.cmd <parameters to pass to BCU>
```

For a list of parameters and options, see the *HP BIOS Configuration Utility User Guide*.

This action applies the BIOS settings specified in the selected REPSET file and/or executes specified command line options. The batch file calls the appropriate version of BCU depending on the architecture of the current operating system.

An example REPSET file is included with the package; \ located in the Config folder of the package source folder and named BCUSettingExampleOnly.REPSET. If this REPSET file is used in this task step, the command line is as follows:

```plaintext
RunBCU.cmd /setconfig:"Config\BCUSettingExampleOnly.REPSET"
```

HP recommends saving the REPSET file in the source folder or subfolder of the package so that you can easily reference it in the command line.

16.3.1 Adding and editing configuration files

NOTE:

Be aware of the following when using this task sequence step:

- After making changes or adding a configuration file to the package folder, be sure to update the HP Client BIOS Configuration Utility package to the distribution points to ensure that the new configuration files are available for the task sequence.
- Some BIOS setting changes might not take effect until after a restart of the target client; a restart might be needed to be sure all settings apply.
• Changing certain BIOS settings might cause task sequences to fail to complete. Be sure to test the desired BIOS configuration file before deploying the task sequence widely.

• Certain characters used in BIOS passwords might require special escaping to work properly; see the HP BIOS Configuration Utility User Guide link included with the HP MIK for details.

For more information, see HP BIOS Configuration Utility (BCU).

1. Obtain the configuration file from the target platform and edit the file by setting the new values and removing settings and values from the configuration file that are not required to be applied through this configuration.

2. Go to the package source folder location of BCU. By default, the package is located in the HP Client Support Packages section of the Configuration Manager Software Library.

3. Select the source folder location and copy the REPSET file to the folder.

4. Update the distribution points so that the REPSET file is made available to the task sequence.

16.4 Refreshing task sequence references

Task sequence references might need to be refreshed if one of the following applies:

• HP MIK was uninstalled and then reinstalled.

• Some or all of the HP Client Support Packages were deleted and reinstalled using the Repair option in the installer. To refresh the references:

 1. Right-click the task sequence and select Edit.

 2. Follow the on-screen instructions in the Action column of the following table.

Table 2 Refreshing task sequence references

<table>
<thead>
<tr>
<th>Task sequence step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set BIOS Configuration (Input File)</td>
<td>Select the package HP Client BIOS Configuration Utility in the folder HP Client Support Packages.</td>
</tr>
<tr>
<td>Remove Disk Partitions (diskpart clean)</td>
<td>Select the package HP Client Support Tools in the folder HP Client Support Packages.</td>
</tr>
</tbody>
</table>

16.5 Using the Configure RAID Example template

16.5.1 Preparing the boot image used by the task sequence

1. Make sure that the boot image has the necessary drivers as shown in Importing a WinPE driver pack and creating boot images.

2. Remove any existing Intel Rapid Storage Technology (Intel RST) RAID drivers to avoid any conflict with the driver added in the following step.

3. Add the version of the Intel Rapid Storage Technology RAID Driver that supports the target client systems to the boot image.

16.5.2 Preparing the packages used by the task sequence

1. Be sure that the target platform driver pack has been imported as shown in Importing HP driver packs.
Technical whitepaper

2. Go to https://downloadcenter.intel.com, and then search for Smart Response Technology Command Line Interface Deployment Tool. Locate the tool version that matches the driver version, and follow the on-screen instructions to download it.

NOTE:
The major version and minor version values of the driver and the command line tool must match. For example, the command line tool version 12.8.x works with the driver version 12.8.x.

3. Unzip the downloaded file. The file might contain zip files for the 64-bit and 32-bit binaries of the tool. Those also need to be extracted.

4. Copy the extracted files and folders of the command line tool to the location to be the source of the software package for this tool.

5. Create a software package that references the source location.

16.5.3 Configuring task sequence steps

1. To begin configuration, right-click the task sequence and select Edit.

![Figure 57 HP Client Task Sequence Configure RAID Example Task Sequence Editor](image)

2. The following steps need to be configured:

 a. Call Intel RSTCii Command Line Utility – Delete All Metadata—Removes all previously configured disk metadata.

 i. Replace the command: The command line in the step, rstcliXX.exe, is just a placeholder. Read the utility documentation carefully and replace the placeholder command with the actual
command. The package containing the command line utility in the preparation step earlier needs to be selected in this step.

The following is an example of the command line:

```
IntelRSTCli\12.8\x64\rstcli64.exe --manage --delete—all-metadata
```

In this example command, IntelRSTCli\12.8\x64 is the relative location from the source folder to the actual command line utility in the content of the package.

ii. Select the Intel command line tool package prepared earlier.

b. Set BIOS Configuration (to RAID mode)—Allows the setting of BIOS settings via BCU. See Configuring the Set BIOS Configuration task step for more details.

i. Replace the command: Like the step to delete all metadata, the command line in the step, `rstcliXX.exe`, is just a placeholder. See the utility documentation and replace the placeholder command with the actual command. The package containing the command line utility needs to be selected. The following is an example of the command line to configure RAID level one (mirror) with hard drives:

```
IntelRSTCli\12.8\x64\rstcli64.exe --create --level 1 -n Volume 0-0-0-0 0-10-0
```

Again, IntelRSTCli\12.8\x64 is the relative location from the source folder to the actual command line utility in the content of the package.

ii. Select the Intel command line tool package prepared earlier.

d. Remove Disk Partitions (diskpart clean)—This step does not need configuration; however, for the task sequence to properly run on all disk scenarios, the deployment and all packages and content within it need to be configured to allow access to the content directly from the network. See Allowing access to deployment content for more information.

e. Format & Partition Disk—By default, the task sequence has the BIOS (legacy/MBR) format step enabled and the EFI (GPT) step disabled. If deploying to a system that is set to UEFI or UEFI Hybrid (with CSM), enable the EFI format step and disable the BIOS format step.

f. Apply Driver Pack—Specifies the HP driver pack imported for the target platform and operating system.

g. Require Reboot to PXE/USB—Because this task sequence requires one or more immediate reboots in the WinPE when the disk has not been defined yet, the `RebootStep` variable is used to control the flow of the task sequence.

3. Review each task sequence step and set parameters as needed for the rest of the task steps. If these steps do not work, verify that you entered the correct network credentials in the task sequence creation dialog.

4. After all task sequence steps have been configured, select OK or Apply to save changes. The task sequence can now be modified and task sequence steps can be added as needed to perform your desired operations.

16.5.4 Assigning a boot image

1. Right-click the task sequence and select Properties.
2. Select the Advanced tab and then select Use a Boot Image.

3. Select Browse, and then select the appropriate boot image that had the Intel RST RAID driver added during the boot image preparation.

NOTE:
Select the boot image with the same architecture as the operating system being deployed (for example, an x86 image for an x86/32-bit operating system and an x64 image for an x64/64-bit operating system).

16.5.5 Allowing access to deployment content

To run properly, the Remove Disk Partitions (diskpart clean) step in the HP MIK Configure RAID Example task sequence needs to be run directly from the network. For this to happen, all packages and content in the task sequence (including the boot image) need to be configured as follows:

1. Right-click the content/package and select Properties.

2. Select the Data Access tab, and select Copy the content in this package to a package share on distribution points.

3. Select OK.

4. When deploying, the Access content directly from the distribution point option can be selected on the Distribution Points step of the wizard.

5. After the task sequence has been modified and amended as needed, deploy to the target collection and distribute content as needed to use the task sequence. Follow the on-screen instructions to complete this process.

16.5.6 Understanding the task sequence execution flow

The task sequence is divided into three task groups—Configure Hardware, Configure RAID, and Install Operating System.

Conditions on the three groups and a computer variable are used to control the processing of the task sequence across multiple reboots over PXE/USB. The Set RebootStep Variable task increments the RebootStep variable by one (1) each time it is executed. If the variable is not present, it is created and set to 0 before being incremented.

During the initial execution of the task sequence, the tasks in the Configure Hardware group are executed. After rebooting and re-executing the task sequence, the Set RebootStep Variable task increments RebootStep to two (2). Because the Configure Hardware group has the condition that it only runs when the value of the RebootStep variable is one (1), this group is skipped after the reboot. The next group, Configure RAID Volume, looks for a RebootStep value of two (2), then it is executed. The last group, Install Operating System, looks for a RebootStep value of three (3). If this condition is met, the third group of steps runs.

Towards the end of the task sequence, the Reset RebootStep Variable task resets RebootStep to zero (0).

Note the following additional points about deploying a task sequence:

- When deploying a task sequence with reboot to PXE/USB, on the Distribution Points screen, set the deployment options to Access content directly from a distribution point when needed by the running task sequence. For this option to be available for each package referenced by your task sequence, select the Data Access tab of the Properties dialog box, and select Copy the content in this package to a package share on distribution points.

- If the task sequence is deployed as Available and not as required, the task sequence must be selected upon reboot for deployment to be continued.

- The target client system must have the appropriate boot order set for reboots for this step to work properly. (That is, if booting via PXE, the PXE NIC should be before any other boot devices in the boot order.) To rerun a required task sequence on a target client system, clear the PXE advertisement:
Technical whitepaper

a. In Configuration Manager, select Assets and Compliance workspace.
b. Select Devices.
c. Select the target client system.
d. Select Clear Required PXE Deployments on the ribbon.

- If the task sequence failed to run completely, it might be necessary to clear or reset the RebootStep variable as follows:
 a. Right-click the target client system and select Properties.
 b. Select the Variables tab.
 c. Select the RebootStep variable, and then select the delete button with the X-like icon.
17 HP BIOS Configuration Utility (BCU)

BCU is a free tool that enables you to do the following:

- Read available BIOS settings and their values from a supported desktop, workstation, or notebook computer
- Set or reset Setup Password on a supported desktop, workstation, or notebook computer
- Replicate BIOS settings across multiple client computers

For more information, see the HP BIOS Configuration Utility User Guide.

NOTE:
The version of BCU included with HP MIK includes a batch file (RunBCU.cmd) that automatically detects the current operating system and runs the correct version of BCU (32- or 64-bit).
18 HP Sure Click

HP Sure Click secures your computer when you browse the internet. When Sure Click is installed, websites are opened in a micro-VM that acts as a container that prevents malware from infecting your computer, since any malicious code executed by the website will be restricted within the micro-VM.

The following HP Sure Click features can be managed with MIK:

- Activate Sure Click
- Force Enablement of Sure Click
- Prevent Sure Click from being disabled
- Update the trusted sites within the application

![Figure 58: HP Sure Click Options Screen](image-url)
HP Sure Sense uses deep learning models to detect malicious files and prevent malware, zero-day, ransomware, and Advanced Persistent Threat (APT) attacks from harming your computer.

The following HP Sure Sense features can be managed with MIK:

1. Threat Protection
2. Enhanced Threat Protection
3. File Reputation Cloud
4. Trusted Files / Folders.

Creating a policy

a. In Configuration Manager, select Client Security, and then select Overview.

b. Select HP Manageability Integration Kit, right-click Sure Sense, and then select Create Policy.

c. Enter a Baseline name and start the creating policy wizard.
8. Confirm default selections and modify as needed. You can Add / Remove trusted Files or Folders.
9. Click on Next.
10. On Summary Page policy details are available for final review and changes. Clicking on edit for any sub-category will re-open HP Sure Sense page for policy updates.

Summary

Almost done. Let’s make sure all settings are correct.

<table>
<thead>
<tr>
<th>Settings</th>
<th>Values</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP Sure Sense Setting(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Experience Improvement</td>
<td>Off</td>
<td>Edit</td>
</tr>
<tr>
<td>Threat Protection</td>
<td>On</td>
<td>Edit</td>
</tr>
<tr>
<td>Notifications</td>
<td>On</td>
<td>Edit</td>
</tr>
<tr>
<td>Enhanced Threat Protection</td>
<td>On</td>
<td>Edit</td>
</tr>
<tr>
<td>File Reputation Cloud</td>
<td>On</td>
<td>Edit</td>
</tr>
<tr>
<td>Automatic Updates</td>
<td>On</td>
<td>Edit</td>
</tr>
<tr>
<td>Debug Logs</td>
<td>Off</td>
<td>Edit</td>
</tr>
<tr>
<td>Add Exclusion Files</td>
<td></td>
<td>Edit</td>
</tr>
<tr>
<td>Remove Exclusion Files</td>
<td></td>
<td>Edit</td>
</tr>
</tbody>
</table>

11. Select Save Policy.
12. After the policy has been saved successfully, select Deploy, and then select the target collection(s) to apply the policy.
20 HP Password Utility

HP Password Utility is a tool for creating an encrypted password file that can be used with a BCU password file parameter. This tool is included with BCU. For more information, see the HP BIOS Configuration Utility User Guide.
21 HP Collaboration Keyboard

The HP Collaboration Keyboard software is used to manage conference calls with the built-in controls of certain HP keyboards.

HP MIK can be used to manage the following features of the software:

- Set the default communication client

![Figure 59: HP Collaboration Keyboard options](image-url)
22 HP Recipes

HP Recipes are cloud-delivered and importable feature updates that provide access to Compliance Items and Task Sequences that could contain updates or scripts for Software, BIOS and Drivers. Recipes will be ready to use or act as a framework to build from.

- Click ‘Recipes’ on the left side menu to open the initial Recipes page
Technical whitepaper

- Click on 'Add New Recipe' to download and add a Recipe to your library

- Available Recipes to download will be listed. Different Categories of Recipes can be selected on the left side to filter the ones that are available for Download.
• Clicking on ‘Details’ will bring up an explanation of what exactly the Recipe does.
• Click on ‘Download’ to download and prepare the Recipe for deployment

• A successfully downloaded Recipe will have a checkmark listed by the entry on the main Recipes screen
Technical whitepaper

- After a Recipe is downloaded, click 'Details' and then proceed to the next screen where you will be able to edit the task sequence steps or other functions available in the Recipe. The Recipe pictured below is for updating a system’s Trusted Platform Module (TPM).
- After a task sequence is created it can be deployed to client systems through SCCM.
23 HP Reports

With HP Reports IT Admin will have ability to generate and save different type of reports,
- HW & BIOS inventory reports.
- Policy compliance report
- Pull reports for important security updates , HP product releases available.

Generate Report:
1. Launch MIK Reports Dashboard.
2. You can Navigate to following sections to generate report

Hardware Inventory

![Hardware Inventory](image1.png)

Compliance Reports

![Compliance Reports](image2.png)
3. To generate report
 ➢ Select the Device collection in which the client machine is added.
 ➢ Build a query by selecting different selection options.
 ➢ Click on Generate Report.

Note
➢ Saved Reports Will list all reported saved.
➢ Blank value cannot generate a report.

24 Uninstalling HP MIK

1. In Control Panel, select Programs and Features.

2. Select HP Manageability Integration Kit, and then select Uninstall.

Any imported driver packages and boot images, and task sequences created by HP MIK remain on the server. The supporting client packages and source files are deleted; however, to preserve the BIOS configuration files, the source folder for BCU is not deleted.
25 Appendix A—Device collection query examples

IT administrators can create device collections defined by query rules in Configuration Manager. For more information on how to create device collection and query rules, go to https://technet.microsoft.com/en-us/library/gg712295.aspx.

NOTE:
HP recommends verifying your device collection queries in a test environment to ensure accurate software and policy deployment to supported systems before pushing the queries out to production environments.

The following are some basic HP collection queries that can be used as a starting point when working with HP systems and HP MIK features.

22.1 All HP systems

NOTE:
Older models might have Hewlett-Packard named as the manufacturer. The query might need to have a condition to include those systems. Be sure to check the support platform list for each HP MIK feature to create the appropriate system collections to manage the feature.

```
select SMS_R_SYSTEM.ResourceID,
    SMS_R_SYSTEM.ResourceType,
    SMS_R_SYSTEM.Name,
    SMS_R_SYSTEM.SMSUniqueIdentifier,
    SMS_R_SYSTEM.ResourceDomainORWorkgroup,
    SMS_R_SYSTEM.Client from SMS_R_System
inner join SMS_G_System_COMPUTER_SYSTEM on
    SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId and
    SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP%'
```

22.2 All HP Systems including older models

```
select SMS_R_SYSTEM.ResourceID,
    SMS_R_SYSTEM.ResourceType,
    SMS_R_SYSTEM.Name,
    SMS_R_SYSTEM.SMSUniqueIdentifier,
    SMS_R_SYSTEM.ResourceDomainORWorkgroup, SMS_R_SYSTEM.Client from SMS_R_System
inner join SMS_G_System_COMPUTER_SYSTEM on
    SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId and
    SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP%'
```
inner join SMS_G_System_COMPUTER_SYSTEM on SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId
where
(SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'Hewlett-Packard%' and SMS_G_System_COMPUTER_SYSTEM.Model not like '%Proliant%') or SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP %'

22.3 HP systems with a specific model name

select SMS_R_SYSTEM.ResourceID,
 SMS_R_SYSTEM.ResourceType,
 SMS_R_SYSTEM.Name,
 SMS_R_SYSTEM.SMSUniqueIdentifier,
 SMS_R_SYSTEM.ResourceDomainORWorkgroup,
 SMS_R_SYSTEM.Client
from SMS_R_System
inner join SMS_G_System_COMPUTER_SYSTEM on SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId
and SMS_G_System_COMPUTER_SYSTEM.Model = 'HP EliteBook 850 G4'

22.4 Windows 10 Enterprise systems

select SMS_R_SYSTEM.ResourceID,
 SMS_R_SYSTEM.ResourceType,
 SMS_R_SYSTEM.Name,
 SMS_R_SYSTEM.SMSUniqueIdentifier,
 SMS_R_SYSTEM.ResourceDomainORWorkgroup,
 SMS_R_SYSTEM.Client
from SMS_R_System inner join SMS_G_System_COMPUTER_SYSTEM on
 SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId and
 SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP %'
and SMS_G_System_Operating_System.Caption like '%Windows%10%Enterprise%'
22.5 Determining whether Device Guard can be enabled

To determine which systems can have Device Guard enabled, go to https://blogs.technet.microsoft.com/enterprisemobility/2015/10/30/managing-windows-10-device-guard-withconfiguration-manager/ and follow the steps in the Determine applicable systems section.
23 Systems with HP Sure Start support

For all HP client computers with HP Manageability Integration Kit, HP Sure Start support information can be retrieved via the Configuration Manager hardware inventory extension.

To add HP_SureStartPolicy BIOS Sure Start settings and Sure Start version information to the Configuration Manager default client settings:

1. In Configuration Manager, select Administration workspace. Then, select Client Settings.
2. Right-click Default Client Settings, and then select Properties.
3. In the Default Settings window, select Hardware Inventory and then select Set Classes.
4. In then Hardware Inventory Classes window, select Add.
5. In the Add Hardware Inventory Class window, select Connect.
6. If Configuration Manager is installed on an HP system that has the HP MIK client installed, then leave the default computer name (which is the system the console is on). Otherwise, specify the name of a system that has the HP MIK client installed.
7. Enter root\HP\InstrumentedServices\v1 for the WMI namespace.
8. Select Recursive, and enter the user name and password to connect to the WMI of the specified system.
9. Add the HP_SureStartPolicy class. Select OK to add the class to hardware inventory.
10. Select OK, and then select OK again to close all windows.

After client computers download the updated machine policy and run the hardware inventory cycle, the extended data is reported to Configuration Manager. The data then is available to create collections.

The following is the query to select all HP systems with HP Sure Start support.

```sql
select SMS_R_SYSTEM.ResourceID, SMS_R_SYSTEM.ResourceType, SMS_R_SYSTEM.Name, SMS_R_SYSTEM.SMSUniqueIdentifier, SMS_R_SYSTEM.ResourceDomainORWorkgroup, SMS_R_SYSTEM.Client
from SMS_R_System inner join SMS_G_System_COMPUTER_SYSTEM on SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId and SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP%'
inner join SMS_G_System_HP_SureStartPolicy on SMS_R_System.ResourceId = SMS_G_System_HP_SureStartPolicy.ResourceId
and SMS_G_System_HP_SureStartPolicy.SureStartVersion like 'SS%'
```
23.1 TPM queries

These example TPM queries use TPM data from the Win32_TPM class of the ROOT\cimv2\Security\MicrosoftTpm namespace from clients. Be sure that this TPM class is added to hardware inventory. When a client computer applies the latest machine policy and reports its hardware inventory data has been reported to Configuration Manager, the client must be included in the appropriate TPM collection.

23.1.1 Systems with TPM Version 1.2

```sql
select SMS_R_SYSTEM.ResourceID, SMS_R_SYSTEM.ResourceType, SMS_R_SYSTEM.Name, SMS_R_SYSTEM.SMSUniqueIdentifier, SMS_R_SYSTEM.ResourceDomainORWorkgroup, SMS_R_SYSTEM.Client
from SMS_R_System inner join SMS_G_System_COMPUTER_SYSTEM on SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId and SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP%' inner join SMS_G_System_TPM on SMS_R_System.ResourceId = SMS_G_System_TPM.ResourceId and MS_G_System_TPM.SpecVersion like '1.2%'
```

23.1.2 Systems with TPM Version 2.0

```sql
select SMS_R_SYSTEM.ResourceID, SMS_R_SYSTEM.ResourceType, SMS_R_SYSTEM.Name, SMS_R_SYSTEM.SMSUniqueIdentifier, SMS_R_SYSTEM.ResourceDomainORWorkgroup, SMS_R_SYSTEM.Client
from SMS_R_System inner join SMS_G_System_COMPUTER_SYSTEM on SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId and SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP%' inner join SMS_G_System_TPM on SMS_R_System.ResourceId = SMS_G_System_TPM.ResourceId and SMS_G_System_TPM.SpecVersion like '2.0%'
```

23.2 Systems with a specified application installed

```sql
select SMS_R_SYSTEM.ResourceID, SMS_R_SYSTEM.ResourceType, SMS_R_SYSTEM.Name, SMS_R_SYSTEM.SMSUniqueIdentifier,
```
Technical whitepaper

```sql
SMS_R_SYSTEM.ResourceDomainORWorkgroup, SMS_R_SYSTEM.Client from SMS_R_System
inner join SMS_G_System_COMPUTER_SYSTEM on
SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId and
SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP%' and
(SMS_R_System.ResourceId in (select ResourceId from
SMS_G_System_ADD_REMOVE_PROGRAMS_64 where ProdID = '{@Application product ID}') and Version
>= '{@Minimum supported application version}')
or (SMS_R_System.ResourceId in (select ResourceId from
SMS_G_System_ADD_REMOVE_PROGRAMS where ProdID = '{@Application product ID}'
and Version >= '{@Minimum supported application version}'))
```

For example, the following query returns the systems with HP WorkWise version 1.3.1.1 or later installed.

```sql
select SMS_R_SYSTEM.ResourceID,
SMS_R_SYSTEM.ResourceType,
SMS_R_SYSTEM.Name,
SMS_R_SYSTEM.SMSUniqueIdentifier,
SMS_R_SYSTEM.ResourceDomainORWorkgroup, SMS_R_SYSTEM.Client from SMS_R_System
inner join SMS_G_System_COMPUTER_SYSTEM on
SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId and
SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP%' and
(SMS_R_System.ResourceId in (select ResourceId from
SMS_G_System_ADD_REMOVE_PROGRAMS_64 where ProdID = '{56051A5A-7A04-4CD4-A5CD-781F1AC10112}' and Version >= '1.3.1.1')
or (SMS_R_System.ResourceId in (select ResourceId from
SMS_G_System_ADD_REMOVE_PROGRAMS where ProdID = '{56051A5A-7A04-4CD4-A5CD-781F1AC10112}' and Version >= '1.3.1.1'))
```

23.3 Systems with Intel Authenticate or a valid Intel Authenticate policy enforced for HP Client Security

For all HP systems that have HP Client Security (with HP MIK support) installed, the WMI class CM_IntelAuthenticatePolicies with the properties State and IsValidPolicyInstalled can be retrieved via the Configuration Manager hardware inventory extension.

To add CM_IntelAuthenticatePolicies to the Configuration Manager default client settings:

1. In Configuration Manager, select Administration workspace. Then, select Client Settings.
2. Right-click Default Client Settings, and then select Properties.
3. In the Default Settings window, select Hardware Inventory and then select Set Classes.

4. In then Hardware Inventory Classes window, select Add.

5. In the Add Hardware Inventory Class window, select Connect.

6. If Configuration Manager is installed on an HP system that has the HP MIK client and HP Client Security installed, then leave the default computer name (which is the system the console is on). Otherwise, specify the name of a system that has the HP MIK client and HP Client Security installed.

7. Enter root\HP\InstrumentedServices\v1 for the WMI namespace.

8. Select Recursive, and enter the user name and password to connect to the WMI of the specified system.

9. Add the CM_IntelAuthenticatePolicies class. Select OK to add the class to hardware inventory.

10. Select OK, and then select OK again to close all windows.

After a client computer downloads the updated machine policy and runs the hardware inventory cycle, the extended data is reported to Configuration Manager. The data then is available to create collections.

The following image shows the CM_IntelAuthenticatePolicies WMI Class on a client computer.

![Figure 58 CM_IntelAuthenticatePolicies WMI Class](image)

The following query selects all HP systems that are ready to receive a valid Intel Authenticate policy for HP Client Security.

```sql
select SMS_R_SYSTEM.ResourceID, 
       SMS_R_SYSTEM.ResourceType, 
       SMS_R_SYSTEM.Name, 
       SMS_R_SYSTEM.SMSUniqueIdentifier, 
       SMS_R_SYSTEM.ResourceDomainORWorkgroup, 
       SMS_R_SYSTEM.Client
```
Technical whitepaper

```
from SMS_R_System inner join SMS_G_System_COMPUTER_SYSTEM on
SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId and
SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP'

inner join SMS_G_System_CM_IntelAuthenticatePolicies on
SMS_R_System.ResourceId =
SMS_G_System_CM_IntelAuthenticatePolicies.ResourceId and
SMS_G_System_CM_IntelAuthenticatePolicies.State = 'Active'
```

If a system does not have Intel Authenticate installed, its State returns NotInstalled, meaning that Intel Authenticate has either not been installed or failed to install. Install Intel Authenticate and restart the client computer to enable HP Client Security to detect the status change.

Similarly, the query to select all HP systems that have a valid Intel Authenticate policy for HP Client Security enabled is as follows:

```
select SMS_R_SYSTEM.ResourceID,
       SMS_R_SYSTEM.ResourceType,
       SMS_R_SYSTEM.Name,
       SMS_R_SYSTEM.SMSUniqueIdentifier,
       SMS_R_SYSTEM.ResourceDomainORWorkgroup,
       SMS_R_SYSTEM.Client
from SMS_R_System inner join SMS_G_System_COMPUTER_SYSTEM on
SMS_G_System_COMPUTER_SYSTEM.ResourceId = SMS_R_System.ResourceId and
SMS_G_System_COMPUTER_SYSTEM.Manufacturer like 'HP'
inner join SMS_G_System_CM_IntelAuthenticatePolicies on
SMS_R_System.ResourceId =
SMS_G_System_CM_IntelAuthenticatePolicies.ResourceId
and SMS_G_System_CM_IntelAuthenticatePolicies.IsValidPolicyInstalled = 'True'
```

If a system does not have a valid Intel Authenticate policy for HP Client Security, the IsValidPolicyInstalled property returns False.
24 Appendix B—Troubleshooting

24.1 HP MIK installation issues
An error occurred while installing a supporting package (HP Client BIOS Configuration Utility or HP Client Support Tools) Verify that the user account running the installer has permission to access the Configuration Manager server and modify the data, or log on as a user that has those permissions.

HP MIK did not completely uninstall
Imported driver packs, created boot images, and task sequences created via HP MIK are not removed when the product is uninstalled. If they are no longer needed, they can be deleted from Configuration Manager.

A task sequence fails to run after reinstalling and/or repairing the installation
When reinstalling and/or repairing the installation, existing task sequences using packages installed by HP MIK are not automatically updated. To function correctly, task sequence references must be refreshed (see Refreshing task sequence references for details).

24.2 Driver pack issues

Configuration Manager reports that the SoftPaq is not a valid driver pack
Only driver packs under the category Manageability – Tools can be imported with HP MIK. Other driver packs listed under other categories (such as Software – System Management) cannot be used with HP MIK.

HP MIK fails to complete the driver pack import process while processing driver INFs
This might happen if an existing driver is detected but the driver source is missing. Verify that the existing driver’s source is present. If not, either delete the driver and reimport the driver pack or restore the missing driver source.

24.3 WinPE image creation issues

Some available boot images are not selectable as base boot images
Because each version of Configuration Manager supports the customization or adding drivers and components to a specific version of WinPE only, the HP MIK Create Boot Image feature can provide only limited support. For more information about the specific requirements for WinPE customization, go to http://technet.microsoft.com/en-us/library/dn387582.aspx.

If ADK and the operating system of your site server fail to appropriately verify the signature of some drivers during the boot image creation, you might get this HP MIK error:

```
Object version mismatch error; a ConfigMgr object has been modified or updated before changes could have been saved. Please try the operation again.
```

If a retry attempt fails, manually customize or add the drivers to your boot image.

24.4 Before troubleshooting a task sequence

- Verify your task sequence settings. The primary cause of task sequence failures is related to the settings you provided in the task sequence steps. Be sure to check the task sequence steps for the following:
 - Valid environment or task sequence variable references.
 - Valid package references—You must make sure that all packages referenced in the task sequence are available from the distribution points and are up to date.
Technical whitepaper

- Verify that the task sequence was created with the currently installed kit or a previously installed version that was updated. If the kit was uninstalled and then reinstalled, or an HP Client Support Package was removed but reinstalled via setup, the HP packages need to be selected again for the task sequence steps that use them. See this document for more information on updating task sequences with new package references.
- Verify that the downloaded driver packs are removed properly by HP MIK.
 - Driver packs downloaded by HP MIK are stored in %TEMP%\hpdriverpack, where %TEMP% is the environment variable defining the default application temporary location for the currently logged on user. HP MIK attempts to remove the downloaded driver packs after a successful import.
- Verify and examine log files.
 - Configuration Manager Console log files are located in the AdminUILog folder. This folder is located in the install directory of the Configuration Manager Console.
 - Log files generated by HP MIK are stored in %TEMP%\hpclient, where %TEMP% is the environment variable defining the default application temporary location for the currently logged on user.

 Extended logging information can be added to the kit log files by adding a debug flag to the registry. In the registry, add a DWORD value named DebugLogging and set the value to 1 for the applicable registry key:

```
HKLM\Software\Wow6432Node\HP\Client\ConfigMgr Integration Kit
```

 - Additional applicable log files may be available in the Configuration Manager log folder (typically located at %ProgramFiles%\Microsoft Configuration Manager\Logs).

24.5 Common task sequence problems

The following are some common problems that might be encountered. If an issue is not listed here, the subsequent troubleshooting sections might provide answers.

Some drivers fail to be injected into the boot image

This might occur when a driver is signed with a newer driver signing method than what DISM and the operating system support. In that case, the driver is treated as an unsigned driver and is not injected into the boot image. For example, when running SCCM 2012 SP1 on Windows Server 2008 R2, some Windows 8/8.1 drivers cannot be injected into a Windows Preinstallation Environment boot image. If the driver in question is not required for your environment, remove the driver from the boot image driver list, and then manually reinject the remaining drivers. For more information, go to https://technet.microsoft.com/en-us/library/hh825070.aspx.

Task sequence fails to start after target platform boots to Windows Preinstallation Environment

There are several possible causes, as follows:

- There is no network connection because the network adapter is unsupported.
- There is no network connection because the boot image does not contain the necessary network driver.
- Configuration Manager does not recognize the target HP client platform.
- One or more of the packages referenced by the task sequence are not available.

To resolve this issue:

1. Install a supported network adapter and set it as the PXE NIC.
2. Use an HP Client WinPE image containing the appropriate HP WinPE driver pack.
3. Verify that the target HP client platform was imported into Configuration Manager with the correct identification information.
4. Open the task sequence and fix any errors that might be present.
Updated or new BIOS configuration input files were not used or available during task sequence execution
Verify that the HP Client BIOS Configuration Utility package was pushed to the appropriate distribution points.

Task sequence starts, but fails to continue
There are several possible causes, as follows:

- A BIOS setting or BIOS configuration change prevents the system from correctly starting.
- The incorrect driver package was selected for the target platform.

To resolve this issue:

1. Verify that the correct driver package was selected for the given target platform.
2. Verify that all dependencies of the task sequence were distributed to distribution points or groups that the target clients or collections can access.

Task sequence fails to open for editing, or error messages appear when viewing certain task sequence steps
There are several possible causes:

- The plugin has been uninstalled. (Error messages such as “There may be too many steps in the task sequence object” might appear.)
- The plugin is corrupted.
- HP MIK has not been installed on the primary site server.

To resolve this issue:

1. Reinstall the plugin to verify that all necessary files are present and registered.
2. Install HP MIK on the primary site server.
3. Repair the plugin installation. This can be done either by running the setup again and selecting Repair or by selecting the Repair option in Programs and Features in Control Panel.
4. Recreate the task sequence in a new task sequence.
5. Reselect the packages for some task sequence steps (see Refreshing task sequence references).

24.6 Task sequence creation and management issues

The error “There may be too many steps in the task sequence object” appears when attempting to edit a task sequence created by HP MIK
This error generally appears when HP MIK has been uninstalled from the server. HP MIK must be reinstalled to the server before the task sequence can be viewed or edited.

The Remove Disk Partitions (diskpart clean) step is needed, but I cannot use the Access Content Directly option
There are a number of workarounds that are possible, including the following:

- Use the Connect to Network Folder task sequence step to connect to the network share containing the package files, and use a Run Command Line task to run the step from the network share.
- Add the package files to the boot image and use a Run Command Line task to run the step, referencing the files in the boot image.

See the Configuration Manager documentation for details about how to perform these actions.
24.7 Task sequence execution issues

System fails to boot using PXE

If the client machine is EFI x86 (IA-32), such as the HP ElitePad 900, then Cumulative Update 1 for Configuration Manager 2012 SP1 (KB2817245) must be installed for PXE boot to work successfully. Configuration Manager 2012 R2 does not need this update.

PXE is an extension of DHCP, which uses a broadcast type of communication. Broadcast communication uses standard timeout values that are not readily changeable. As a result, a computer waits for a default timeframe to receive a DHCP or PXE response before timing out and causing a failure condition. Each time a computer is rebooted, it must renegotiate the connection to the switch. Some network switches arrive configured with default settings that might cause connectivity delays. The settings on the switch might cause a DHCP or PXE timeout because they fail to negotiate a connection in time.

The following features might be affected by negotiation timeouts:

- Spanning Tree Protocol (STP)—STP is a protocol that prevents loops and provides redundancy within a network. A networking device using this algorithm might experience some latency as it collects information about other network devices. During this period of information collection, servers might boot to PXE and time out while waiting for a response from Windows Deployment Services. To prevent these issues, disable the STP or enable PortFast on end-node ports for the target server. For further information, see the manufacturer’s documentation.
- EtherChannel or Port Aggregation Protocol (PAgP)—EtherChannel enables multiple links between devices to act as one fast link and share the load between the links. Running the EtherChannel Protocol in automatic mode might cause a connectivity delay of up to 15 seconds. To eliminate this delay, switch to a manual mode or turn off this feature.
- Speed and duplex negotiation—If auto-negotiation on the switch is set to off and the server is not configured to that speed and duplex setting, then the switch does not negotiate with that server.

Verify that PXE is also running properly on the server. The system must be set to boot off PXE before any other bootable devices are present in the system.

System booted PXE, but timed out waiting for the PXE server to respond

Verify that the WinPE boot images are pushed to the appropriate distribution point. In addition, the distribution points used must have PXE enabled.

To verify this setting:

- Select Administration, select Site Configuration, and then select Server and Site System Roles.
- Select the appropriate distribution point.
- Right-click the Distribution Point role, select Properties, and then select PXE.

WinPE never starts the task sequence

See the SMSTS.LOG file at X:\windows\temp\smstslog\smsts.log. If a package does not download or cannot be accessed, you might not have the appropriate network drivers installed. You might need to update the WinPE image with newer WinPE drivers for the target platform. Verify that all packages referenced in the task sequence are available from the distribution point. WinPE validates all packages to make sure they are available before processing the task sequence.

A task sequence reports “Failed to resolve task sequence dependencies", with the driver pack imported by HP MIK as the dependency at fault, even though the content status says “Distributed"

There is an issue with Configuration Manager where sometimes the hashes for a package are not generated, which results in the device being unable to locate the content since the hashes are used for those purposes.

To resolve this issue:

1. Select the driver pack.
2. Right-click and select Update Distribution Points.
3. Select Yes on the dialog box that appears.

After the process completes, the driver pack can be located and resolved by the task sequence.

Target system failed to run or use an updated BCU file
You must update the distribution points containing the BCU package when you modify, add, or remove a configuration file.

The default boot order does not enable PXE to boot when a valid drive exists
When an active partition is created on a hard drive, it automatically becomes a bootable device if a valid operating system has been installed. If the PXE NIC is after the hard drive in the boot order, then the hard drive boots to Windows before PXE or causes an “Invalid System Partition” error if Windows is not installed.

To resolve this issue:

4. Verify that PXE is placed before the hard drive in the boot order.

5. If necessary, set the boot order using HP Client BIOS Configuration Utility in a task step.

 – or –

 Set the boot order in the BIOS on the target platform. See the platform documentation for specific instructions on how to do this.

For more info on using BCU to set the boot order, see Configuring the Set BIOS Configuration task step.

If PXE is first in the boot order, the computer does not actually boot to PXE unless Configuration Manager has a mandatory task sequence for it to run.

Task sequence fails with the error “Failed to Download Policy”
This error code (0x80093102 or 0x80004005) refers to a certificate validation issue. The SMSTS.LOG file displays an entry with any of the following text:

```
CryptDecryptMessage ( &DecryptParams, pbEncrypted, nEncryptedSize, 0,
&nPlainSize, 0 ), HRESULT=80093102
no cert available for policy decoding
```

The following are possible causes:

- A misconfiguration of your domain or site server, such as the DNS not pointing to the site server or the site server not specifying a valid FQDN (which is referred to by the DNS listing), can cause this error. If your site server does not specify a FQDN and only specifies the NETBIOS name, and your DNS server tries to refer to the FQDN, an incorrect lookup might cause this error.

- The certificate being used for PXE and boot media is blocked or missing. Verify whether any of the certificates under the Site Settings node are blocked or missing. Open the certificates to verify that they are actually installed into the certificate store. If not, install them.

If the task sequence still fails, remove the package from the distribution points and/or groups, and then add it back. This causes the package hash to be regenerated.

A task sequence does not run again even after clearing the PXE advertisement
You must make sure that the deployment is set to allow a rerun so that the advertisement is applied to the computer regardless of whether it previously ran the task sequence.

To resolve this issue:

1. On the properties page of the deployment, select Scheduling.

2. Select Rerun behavior.
Technical whitepaper

Task sequence fails at Apply Operating System step with “Failed to make volume X:\bootable” error message

This issue is indicated by log content similar to the following message:

```
MakeVolumeBootable( pszVolume ), HRESULT=80004005
(e:\nts_sms_fre\sms\client\osdeployment\applyos\installcommon.cpp,759)
Failed to make volume E:\ bootable. Please ensure that you have set an active partition on the boot disk before installing the operating system.
Unspecified error (Error: 80004005; Source: Windows)
ConfigureBootVolume(targetVolume), HRESULT=80004005
(e:\nts_sms_fre\sms\client\osdeployment\applyos\applyos.cpp,326)
Process completed with exit code 2147500037
```

To resolve this issue if you are using a Format & Partition action in your task sequence to partition the hard drives for MBR systems:

- Select the Make this the boot partition option. If you do not select this option and the computer has a single hard drive, then the task sequence engine automatically makes one of the partitions the boot partition. If there are multiple drives, it cannot automatically determine which boot partition must be bootable.

System environment variables are not carried over to the next action in the task sequence

When a task sequence runs, commands are executed in a command shell. When that task ends, so does that command shell environment, causing the loss of any system variables defined within that task. Verify that variables that pass between tasks are set as Task Sequence variables, Collection variables, or Machine variables.

Task sequence reported an error while executing

Although there can be a wide variety of reasons why a task sequence fails to fully execute, there are a number of common reasons that might need to be resolved to fix the task sequence execution issue:

- Verify that the DNS and WINS servers are working properly and are stable.
- Verify that the supplied credentials in the task sequence steps have the necessary access rights to the SCCM server to clear and set task sequence variables and PXE flags.
- If attempting to apply BIOS settings via the BCU while in WinPE, the disk must already be partitioned and formatted to allow downloading of the package to the system.

Examining the log files as shown in step 5 of Diagnosing driver pack or task sequence errors might also provide insight into the reason for failure.

24.8 Diagnosing driver pack or task sequence errors

1. Export the task sequence by right-clicking the task sequence and selecting Export.
2. If the issue appears, collect screen captures of the relevant portions.
3. If the issue is related to the installation of the product or occurs soon after installation:
 a. Copy the MSI installation log located in the temporary files directory (locate using the %TEMP% environment variable). This file is usually located in a “$1” directory and has a random name that is formatted as follows:
 `MSI<RandomCharacters>.LOG`.
 b. Copy the support packages installation log located in the temporary files directory (locate using the %TEMP% environment variable). The file name is `HPClientSCCM2012Kit-setup.log`.
4. If the issue occurred while using the console, copy the HP MIK log files located in %TEMP%\hpclient. In addition, the Configuration Manager console log files located in the AdminUILog folder of the Configuration Manager console should be copied as well.

5. If the issue occurred while running a task sequence, the following files should be copied from the WinPE environment. These files can be accessed during task sequence execution by pressing F8 to open the command prompt. To use the command prompt in WinPE, select the Enable command support option for the boot image. This option can be found by right-clicking the boot image and selecting Properties, and then selecting Windows PE.

 a. Copy the SMSTS.LOG file from where WinPE might be stored:
 - For PXE boot: X:\Windows\Temp\Smstslog
 - On a local (for example, C: or D:) drive under \Smstslog
 - SMSTSLOG<Time-Based-Name>.LOG
 b. Copy the files used as input to the configuration task, such as configuration INI or XML files.
 c. Copy SetupAPI.APP.LOG and SetupAPI.DEV.LOG from WinPE stored in X:\Windows\inf for PXE boot.

6. If the error relates to baselines and policies, capture the following log files:

 a. HP MIK console log files located in %PROGRAMDATA%\HP\MIK\Logs B. All HP MIK client side log files located in %PROGRAMDATA%\HP\MIK\Logs and
 %SYSTEMROOT%\System32\config\systemprofile\AppData\Roaming\hpqLog\com.hp.sam.log

7. If examining these log files does not help you resolve the issue and you need to contact HP, prepare a complete, detailed explanation of the issue, including the following:

 a. The exact point of failure (for example, the action running when the process failed, a description or screen captures of error messages and error codes)
 b. A detailed description of the computers being configured (model, hardware configuration, and NIC details) – A description of other circumstances, such as the following:
 i. Has this task sequence or action ever worked? When did it stop working?
 ii. If it had worked before, what is different now? Is the task sequence being applied to different computer types, is it using different configuration files or different task sequence variables, or has something else been modified?
Appendix C – Sure Run & Sure Recover Key Generation for MIK

The Key Endorsement Certificate used by HP Sure Run and HP Sure Recover contains the top level key used to authorize all other operations. As such, the intent is that its corresponding private key is strongly controlled. In addition, the hope is that in the future the firmware will enforce the requirement of the certificate being an EV certificate. In the meantime, the firmware supports using self signed certificates to test HP Sure Run and HP Sure Recover.

The following are sample steps to generate a Key Endorsement Certificate and Signing Key Certificate using the open source openssl command. At the end of these steps you will have a key endorsement certificate in the file key_endorsement_cert.pfx and a signing key certificate in the file signing_key_cert.pfx.

WARNING: These instructions are creating private keys that will be used to securely configure the Sure Run / Sure Recover on platforms. Appropriate care should be taken to protect the files being generated here as well as the temporary files create.

NOTE: On some Windows versions of OpenSSL, it may be necessary to set up an environment variable to point to the openssl configuration file. Without this these openssl command may not generate output.

25.1 Creating the Key Endorsement Certificate:

1. Ensure that the temp files do not exist from the prior operations
   ```
   del key.pem
del cert.pem
   ```

2. Generate a certificate to use for the key endorsement certificate (the command below should be typed as a single line):

   ```
   openssl req -x509 -nodes -newkey rsa:2048
   -keyout key.pem -out cert.pem -days 3650
   -subj /C=US/ST=State/L=City/O=Company/OU=Org/CN=www.example.com"
   ```

 NOTE: The -subj command line parameter in the first command should be updated to reflect information specific to your organization. If you do not include this parameter openssl will prompt you for the information. This information may be reported to users and admins in future versions of the firmware so it should be correct.

3. Convert the self-signed public certificate to PKCS#12 format (the command below should be typed as a single line):

   ```
   openssl pkcs12 -inkey key.pem -in cert.pem -export
   -keypbe PBE-SHA1-3DES -certpbe PBE-SHA1-3DES
   -out key_endorsement_cert.pfx
   -name "Sure Run / Sure Recover Key Endorsement Certificate"
   ```

 In this step you will be prompted for the “Export Password” – it is **REQUIRED** that you just press ENTER (i.e., no password).

 NOTE: The files key.pem and cert.pem are temp files that should be securely discarded.

25.2 Create the Signing Key Certificate:
1. Ensure that the temp files do not exist from the prior operations

 \texttt{del key.pem} \\
 \texttt{del cert.pem}

2. Generate a certificate to use for the key endorsement certificate (the command below should be typed as a single line):

 \texttt{openssl req -x509 -nodes -newkey rsa:2048} \\
 \texttt{-keyout key.pem -out cert.pem -days 3650} \\
 \texttt{-subj "/C=US/ST=State/L=City/O=Company/OU=Org/CN=www.example.com"}

 \textbf{NOTE}: The \texttt{-subj} command line parameter in the first command should be updated to reflect information specific to your organization. If you do not include this parameter openssl will prompt you for the information.

3. Convert the self-signed public certificate to PKCS#12 format (the command below should be typed as a single line):

 \texttt{openssl pkcs12 -inkey key.pem -in cert.pem -export} \\
 \texttt{-keypbe PBE-SHA1-3DES -certpbe PBE-SHA1-3DES} \\
 \texttt{-out signing_key_cert.pfx} \\
 \texttt{-name "Sure Run / Sure Recover Signing Key Certificate"}

 In this step you will be prompted for the “Export Password” – it is \textbf{REQUIRED} that you just press ENTER (i.e., no password).

 \textbf{NOTE}: The files key.pem and cert.pem are temp files that should be securely discarded.

 \textbf{NOTE}: The private key in use here is unprotected in all files.

A few notes:

- Once the user has pressed the ‘Submit Certificate’ button the files are loaded and stored as an embedded property within the site control. At this point the files are no longer needed.
- If MIK has a problem with the certificate or key provided it displays a generic message like “Failed to store signing key certificate” or “Failed to store key endorsement certificate”.
- The keys are required to be 2048 bits in length and use an exponent of 0x10001
26 For more information

For all your client manageability needs, go to the HP Client Management Solutions website: http://www.hp.com/go/clientmanagement. For all HP client tools and driver packs, select HP Download Library on the HP Client Management Solutions home page.